Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 17 (1981), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Evaluation of hydrologic methodology used in a number of water balance studies of lakes in the United States shows that most of these studies calculate one or more terms of the budget as the residual. A literature review was made of studies in which the primary purpose was error analysis of hydrologic measurement and interpretation. Estimates of precipitation can have a wide range of error, depending on the gage placement, gage spacing, and areal averaging technique. Errors in measurement of individual storms can be as high as 75 percent. Errors in short term averages are commonly in the 15-30 percent range, but decrease to about 5 percent or less for annual estimates. Errors in estimates of evaporation can also vary widely depending on instrumentation and methodology. The energy budget is the most accurate method of calculating evaporation; errors are in the 10–15 percent range. If pans are used that are located a distance from the lake of interest, errors can be considerable. Annual pan-to-lake coefficients should not be used for monthly estimates of evaporation because they differ from the commonly used coefficient of 0.7 by more than 100 percent. Errors in estimates of stream discharge are often considered to be within 5 percent. If the measuring section, type of flow profile, and other considerations, such as stage discharge relationship, are less than ideal errors in estimates of stream discharge can be considerably greater than 5 percent. Errors in estimating overland (nonchannelized) flow have not been evaluated, and in most lake studies this component is not mentioned. Comparison of several lake water balances in which the risdual consists solely of errors in measurement, shows that such a residual, if interpreted as ground water, can differ from an independent estimate of ground water by more than 100 percent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...