Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 33 (1978), S. 493-507 
    ISSN: 1432-1106
    Keywords: VL-VA neurons ; Entopenduncular nucleus (Pallidum) ; Monosynaptic inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Pallido-thalamic transmission was studied by intracellular recording from neurons in the ventrolateral (VL) and ventroanterior (VA) nuclei of the thalamus in cats anesthetized with pentobarbital. Stimulation of the entopeduncular nucleus (ENT) produced short latency, inhibitory postsynaptic potentials in the VL-VA neurons (1.60 ms on average). When stimuli were applied closer to the VL-VA region along the pallido-thalamic pathway, i.e., to the rostral Forel's field, the IPSP latency was significantly reduced. Linear regression analysis of the IPSP latency against conduction distance between different stimulating and recording positions indicated that the IPSP was produced through a monosynaptic pathway at a conduction velocity of 5 to 11 m/s. The neurons which received IPSPs from the ENT distributed in the rostromedial VL and in the rostral VA, whereas relay cells responding only to the contralateral brachium conjunctivum were found in the caudal VL and in the dorsolateral portion of the rostral VL-VA complex. Reciprocal convergence of pallidal and cerebellar impulses were observed in only a small number of cells, which were located in the border between the two neuron groups. Recording of extracellular field potentials and focal stimulation within and around the rostral VL also indicated that the fiber potentials arose from the ENT nucleus and propagated along a bundle of fibers which terminated within the rostromedial VL-VA complex. These results are all explicable by assuming that the entopeduncular neurons are inhibitory in nature and so inhibit thalamic neurons monosynaptically.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...