Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 19 (1975), S. 2351-2351 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 19 (1975), S. 2545-2562 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The fracture behavior of a piperidine/bisphenol A diglycidyl ether (A) resin has been determined in bulk and as an adhesive using the linear elastic fracture methods developed by Mostovoy1. The effect of adding carboxy-terminated butadiene-acrylonitrile (CTBN) elastomer to resin A was investigated. The opening-mode fracture energy () of resin A was 120 to 150 J/m2, and largely attributable to plastic deformation. Fractographic evidence was obtained for plastic flow at the crack tip during crack initiation. Propagation was unstable due to the rate dependence of the plasticity. There were no significant differences in the bulk and adhesive fracture behavior. Addition of 5-15% CTBN to resin A produced minute elastomer particles which increased to ∼4000J/m2 (at 15%). Further CTBN addition resulted in an elastomer-epoxy blend and a decrease in fracture energy. Fractography again indicated that crack initiation involved plastic deformation but that the elastomer had greatly increased the volume in which the deformation occurred. The adhesive fracture of the elastomer-epoxy was found to be strongly dependent on the crack-tip deformation zone size (ryc) in that was a maximum when bond thickness was equal to 2 ryc. At bond thicknesses less than 2 ryc, there was a restraint on the development of the plastic zone resulting in lower values.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 13 (1979), S. 517-541 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A series of poly(α-amino acid)s with controlled chemical variations were investigated in order to assess the effect of different chemical moieties upon arterial thrombosis. The gross implant surface properties ranged from hydrophobic to hydrophilic, ionic and nonionic. The materials were tested by implantation within canine femoral and carotid arteries. Results were compared with the response to the polyurethane Biomer.The changes in implant surface chemistry elicited a range of response that varied from intense thrombosis and rapid vessel occlusion to minimal thrombosis and endothelialization. The results showed that no simple relationship exists between a gross surface property, such as hydrophobicity, and the degree of thrombosis resistance. Some hydropobic and hydrophilic materials were found to have good thrombosis were shown to play and hydrophilic materials were found to have good thrombosis were shown to play an important role in both initial thrombosis and endothelialization. The major difference between materials that progressed to to rapid vessel occlusion and materials that remained patent was the degree of direct leukocyte adherence and spreading on the implant surface prior to extensive platelet aggregation (〈30 min). It was consistent for both hydrophobic and hydrophilic materials that the lack of direct leukocyte adherence to the implant surface was associated with intense thrombosis and rapid vessel occlusion. Conversely, the presence of numerous leukocytes directly adherent to either hydrophobic or hydrophilic surfaces appeared to have a moderating effect upon thrombosis and vessels with these implants remained patent. In instances when thrombosis was nonocclusive, the surfaces of the thrombi became endothelialized, primarily through the transformation of mononuclear leukocytes into endothelial cells. This article includes a hypothetical model representing the sequence of events and alternative pathways occurring at the blood-material interface, with special attention given to the involvement of leukocytes in arterial thrombosis.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...