Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 356 (1975), S. 33-45 
    ISSN: 1432-2013
    Keywords: Vascular Smooth Muscle ; Rat Portal Vein ; Force Velocity Relation ; Velocity of Shortening ; Sliding Filament Mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Force velocity relationships of isolated vascular smooth muscle preparations were examined in the tetanized rat portal-anterior mesenteric vein by means of afterloaded isotonic contractions. Lowering of the temperature from 37°C to 25°C caused an average decrease of the following parameters: maximal velocity of shortening at zero load from 0.51 to 0.28 muscle length/sec; maximal rate of tension increase (dT/dt) from 847 to 362 dyn/sec; mechanical tension developed at the maximum ofdT/dt from 43 to 34% of the peak force generation; constantb of Hill's equation from 0.18 to 0.09 muscle length/sec. The latency was prolonged from 0.33 to 0.56 sec, and the time-to-maximum ofdT/dt from 0.9 to 1.6 sec. Between 27°C and 37°C the followingQ 10 values were calculated: for the maximal velocity of shortening at zero load 1.56; for the maximal rate of tension increase 1.88; for the latency 1.63. No distinct influence of temperature could be observed on the extent of isotonic shortening at zero load (0.69 muscle length at 37°C), on the extent of peak force generation (1107 dyn at 37°C), and on constanta of Hill's equation (0.35 at 37°C). It is concluded that parameters of contraction velocity in vascular smooth muscle depend on temperature, whereas the extent of contraction is independent of temperature. These findings are discussed in connection with the theory of the sliding-filament mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...