Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 12 (1978), S. 25-55 
    ISSN: 1432-1432
    Keywords: Isozymes ; Gene evolution ; Gene duplication ; Gene regulation ; Creatine kinase ; Fishes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The phylogeny of the creatine kinase (CK, EC 2.7.3.2) isozyme loci and their differential tissue expressions were determined for representatives of 65 families of vertebrates, with emphasis on the fishes. The transition from the single creatine kinase locus, characteristic of certain echinoderms, to the two creatine kinase loci which are orthologous to those present in all vertebrates, occurred early in the chordate line. The majority of pre-teleostean fishes possesses only these two CK loci (A and C). These loci are relatively generalized in their tissue expressions which are variable among species of primitive fishes. The third and fourth creatine kinase loci (B and D) arose separately in the ancestors of the bony fishes and appear to be the result of regional genome duplications. Concomitant with the increase in the number of isozyme loci has been an increase in the specificity of their tissue expression. In the advanced teleost fishes the four CK loci are differentially expressed in a characteristic manner. The A2 isozyme predominates in skeletal muscle, the B2 isozyme in eye and brain, the C2 isozyme in stomach muscle, and the D2 isozyme is found exclusively in testis. We propose a phylogeny of the creatine kinase genes in the lower chordates based on the time of appearance of new CK loci, the sequence in which the loci achieve a tissue restricted expression, and the immunochemical relatedness of the orthologous and paralogous gene products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 12 (1979), S. 267-317 
    ISSN: 1432-1432
    Keywords: Isozymes ; Gene duplication and regulation ; Molecular and regulatory evolution ; Polyploidy Fish ; Teleosts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the 50 million years since the polyploidization event that gave rise to the catostomid family of fishes the duplicate genes encoding isozymes have undergone different fates. Ample opportunity has been available for regulatory evolution of these duplicate genes. Approximately half the duplicate genes have lost their expressions during this time. Of the duplicate genes remaining, the majority have diverged to different extents in their expression within and among adult tissues. The pattern of divergence of duplicate gene expression is consistent with the accumulation of mutations at regulatory genes. The absence of a correlation of extent of divergence of gene expression with the level of genetic variability for isozymes at these loci is consistent with the view that the rates of regulatory gene and structural gene evolution are uncoupled. The magnitude of divergence of duplicate gene expressions varies among tissues, enzymes, and species. Little correlation was found with the extent of divergence of duplicate gene expression within a species and its degree of morphological “conservatism”, although species pairs which are increasingly taxonomically distant are less likely to share specific patterns of differential gene expression. Probable phylogenetic times of origin of several patterns of differential gene expression have been proposed. Some patterns of differential gene expression have evolved in recent evolutionary times and are specific to one or a few species, whereas at least one pattern of differential gene expression is present in nearly all species and probably arose soon after the polyploidization event. Multilocus isozymes, formed by polyploidization, provide a useful model system for studying the forces responsible for the maintenance of duplicate genes and the evolution of these once identical genes to new spatially and temporally specific patterns of regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...