Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 9 (1977), S. 393-417 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Synopsis The three major types of glycoproteins present in animal cells, that is, the secretory, lysosomal and plasma membrane glycoproteins, were examined with regard to the sites of synthesis of their carbohydrate side chains and to their subsequent migration within cells. The site at which a monosaccharide is added to a growing glycoprotein depends on the position of that monosaccharide in the carbohydrate side-chain. Thus, radiauutography of thyroid cells within minutes of the intravenous injection of labelled mannose, a sugar located near the base of the larger side-chains, reveals that it is incorporated in rough endoplasmic reticulum, whereas the more distally located galactose and fucose are incorporated in the Golgi apparatus. Recently [3H]N-acetylmannosamine, a specific precursor for the terminally located sialic acid residues, was shown to be also added in the Golgi apparatus. Presumably synthesis of glycoproteins is completed in this organelle. Radioautographs of animals sacrificed a few hours after injection of [3H]N-acetylmannosamine show that, in many secretory cells, labelled glycoproteins pass into secretory products. In these cells, as well as in non-secretory cells, the label may also appear within lysosomes and at the cell surface. In the latter site, it is presumably included within the plasma membrane glycoproteins whose carbohydrate side-chains form the cell coat. The continual migration of glycoproteins from Golgi apparatus to cell surface implies turnover of plasma membrane glycoproteins. Radioautographic quantitation of [3H]fucose label at the surface of proximal tubule cells in the kidney of singly-injected adult mice have shown that, after an initial peak, cell surface labelling decreases at a rate indicating a half-life of plasma membrane glycoproteins of about three days.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 148 (1977), S. 241-273 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The formation and turnover of the glycoproteins of the plasma membrane have been investigated by quantitative radioautography in the kidney tubules of young rats and adult mice killed at various time intervals after an intravenous injection of 3H-fucose.In young (40 g) rats killed five to ten minutes after the injection, radioautographs of distal tubule cells show that the Golgi apparatus contained about 85% of the cell label. By 30 hours, only 8% of the label remained in this organelle, whereas 67% was in the plasma membrane, indicating that most of the label had migrated from Golgi apparatus to this membrane. Similarly, in proximal tubule cells, about 82% of the label was initially in the Golgi apparatus, but less than 2% remained at 30 hours, at which time 78% was in the plasma membrane. In the latter cells, the apical tubules and vacuoles became heavily labeled before the apical microvilli did and, therefore, may be involved in the transit of label from the Golgi apparatus to the microvillous membrane.The results are interpreted to mean that, in kidney tubule cells, the Golgi apparatus is the site of a continuous incorporation of fucose into glycoproteins and that these migrate to the plasma membrane. In fully formed cells, such a conclusion would imply a continuous turnover of plasma membrane glycoproteins. However, in the rapidly growing kidney of young rats many new cells are added daily, the growth of which might involve net addition as well as turnover of glycoproteins. Accordingly, the experiment has been repeated in adult mice, in which the cells are assumed to be fully formed. Furthermore, since turnover implies eventual decrease of incorporated label, some of the animals have been killed at longer intervals, up to 27 days after injection. In these adult mice, as in young rats, prompt Golgi uptake and subsequent migration of label to the plasma membrane were observed in distal and proximal tubule cells. With time the label content of the plasma membrane decreased gradually, and by 27 days had virtually disappeared. From grain counts, it is concluded that the mean half-life of glycoproteins in the apical membrane of distal tubule cells is about two days, whereas in both the apical and basal membranes of proximal tubule cells, it is slightly over three days.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Adult male mice were given a continuous infusion of about 0.5 μCi of 3H-thymidine per gram body weight per day for periods varying from 1 to 60 days. Semithin sections of descending colon were cut from plastic-embedded blocks and stained by a method combining silver impregnation and iron hematoxylin, by which argentaffin entero-endocrine cells and caveolated cells could be identified. From radioautographs, the labeling index of these cells was determined.One to three days after the beginning of 3H-thymidine infusion, label is observed in some of the stained entero-endocrine cells in the bottom of the crypts; the apices of these cells reach the crypt lumen and are joined to neighboring cells by terminal bars (junctional complexes). After five to seven days, labeled entero-endocrine cells are seen on the sides of the crypts, where their base stretches along the basement membrane and their apex has lost its terminal bar connections to neighboring cells. Finally, by 13 and 24 days, labeled cells are observed within the epithelium at the mucosal surface. The turnover time, which is taken to be equal to the mean time required for migration from site of origin to site of loss on the mucosal surface, has been estimated at 23.3 days. This is much longer than the 4.6 days required by the two main cell types of the epithelium  -  vacuolated-columnar and mucous cells  -  to travel the same route. It is likely that, after entero-endocrine cells lose their terminal bar attachment to other epithelial cells, they migrate independently and very slowly.Labeled caveolated cells are first seen in the crypt bottom one day after the beginning of 3H-thymidine infusion. By three to five days, they are on the sides of the crypts; their base is stretched along the basement membrane, but their apex retains its attachment to neighboring cells by terminal bars. By seven days, labeled caveolated cells are on the mucosal surface. Their turnover time has been assessed at 8.2 days. This is, again, longer than for the two main types to which they are bound by terminal bars throughout migration. The discrepancy is explained by the caveolated cells arising deeper in the crypts than most vacuolated-columnar and mucous cells.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...