Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Proximal Convolution ; Isotonic Reabsorption ; Bicarbonate Buffer ; Lipid Soluble Buffers ; Sodium Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The fluid reabsorption from the proximal convolution of the rat kidney was measured with the Gertz shrinking droplet technique. Simultaneously, the peritubular capillaries were perfused with artificial solutions. In some experimental series, fluid from the shrinking droplet was withdrawn and analysed for Cl−, Na+, and osmolality so that the transtubular transport of Na+, Cl−, and HCO 3 − could be calculated. Capillary perfusate in some experiments was also withdrawn and its pH was measured. The following results were obtained: 1. With increasing concentration of HCO 3 − in the capillary perfusate, the transtubular water, sodium, chloride, and bicarbonate reabsorption increased. 2. The sulfonamide buffers sulfamerazine and glycodiazine (Redul®), which easily penetrate the tubular wall, could, in equimolar concentrations, substitute totally for the bicarbonate buffer in promoting isotonic fluid absorption. 3. Butyrate, propionate, and acetate were also effective; pyruvate, lactate, and paraaminohippurate, however, were not. 4. The effect of HCO 3 − and glycodiazine on isotonic absorption was shown to depend exclusively on the concentration of the buffer anion and not on the concentration of undissociated acid or pH. From these data it is suggested that for proximal isotonic absorption of water, sodium, and chloride, the reabsorption of buffer anions via H+ secretion and nonionic diffusion may be essential. The H+ secretion or the buffer anion absorption across the luminal cell wall may secondarily influence the active Na+ transporting mechanism located at the basal cell site either by a luminal H+−Na+ exchange mechanism or by a lyotropic effect which would increase the Na+ permeability of the luminal cell site. Thereby more Na+ would be delivered to the Na+ pumping site and the rate of Na+ pumping would be augmented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 351 (1974), S. 49-60 
    ISSN: 1432-2013
    Keywords: Amino Acid Transport ; Sodium Cotransport ; Kidney Tubules ; Kidney Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary With the technique of stop flow microperfusion with simultaneous capillary microperfusion the zero net flux transtubular concentration differences (Δc) of labelled amino acids which are equivalent to their active transport rates were measured. Alll-amino acids tested (phenylalanine, histidine, aminobicycloheptane-carboxylic acid, aminoisobutyric acid; lysine, ornithine, arginine; aspartic acid; proline and glycine) showed a considerable Δc, i.e. active transport rate. When, however, the ambient sodium was replaced by choline the Δc values dropped to zero. An analysis of the Na+ dependence of the ornithine transport revealed that the sodium-dependence is of the mixed type, i.e. thatK m decreased andV max increased with increasing Na+ concentration to the same extent. In contrast to other biological systems no mutual interaction between the Na+-dependentd-glucose andl-histidine transport could be observed. Incidental to these studies it was observed that the active transport rate ofd-histidine was in the range of 40% of that of thel-isomer while ford-phenylalanine it was only in the range of 10% of the active transport of thel-isomer. Furthermore it was found that thel-aspartic acid transport was already saturated at a luminall-aspartic acid concentration of 0.05 mmol/l while that ofl-phenylalanine was not saturated even at a luminal concentration of 9 mmol/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...