Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (6)
  • Chemistry  (6)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 14 (1974), S. 633-640 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The mechanical properties of a series of thermoplastics reinforced with unidirectionally oriented short fibers are reported. Both organic and inorganic fiber reinforcements were used in fiber volume fractions of 0.10 to 0.50. A number of these composites were found to have excellent strength and stiffness properties combined with good toughness and low density. The dependence of composite properties on the properties of the constituent materials is discussed. Fiber efficiency factors for strength and modulus are presented and models for predicting composite mechanical behavior are reviewed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 11 (1971), S. 369-376 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dynamic mechanical properties of polyester and polyether urethane block polymers have been investigated at four frequencies (3.5, 11, 35 and 110 Hz) in the temperature range of  -  150 to 200°C. The existence of a two phase structure was demonstrated in these systems by the observation of two major transition regions corresponding to (1) the glass transition temperature (Tg) of the ester or ether soft segments, and to (2) the softening temperature of the aromatic-urethane hard segments. Several secondary relaxations were observed in addition to the two major relaxations. It was possible to assign molecular mechanisms to each of these relaxations. All relaxation phenomena were greatly influenced by the molecular weight of the prepolymer, weight percent of hard segments, and thermal history. An increase in the molecular weight of the prepolymer above 1,000 at constant hard segment content resulted in a semi-crystalline material, which possessed a lower Tg for the macroglycol segments. Annealing to enhance crystallinity increased the Tg of the soft segments, consistent with the usual observation in semicrystalline homopolymers. These findings suggest that the relaxation mechanisms of polyurethane block polymers are not only influenced by the degree of crystallinity, but also by the nature of the domain structure.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 13 (1973), S. 300-307 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A modified Eyring rate expression based on an asymmetrical potential energy barrier is used to predict the onset of plastic yield in glassy polymers. Equations for the prediction of plastic yield delay times in creep and yield stresses in constant rate of strain testing are developed and compared to experimental data for samples of polycarbonate and polysulfone with various thermal histories. The two equations accurately fit the experimental results for a suitable choice of parameters. Parameters from the creep data can be used to predict yield stress values in constant rate of strain testing. Variation in simple thermal history changes the model parameters in a way that is qualitatively accounted for from a physical interpretation of the constants.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 897-912 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Atactic polystyrene was subjected to an elevated pressure-temperature cycle with the resulting densification, mechanical properties, and thermal scanning behavior observed. Most densifications were carried out with the PST as a viscous liquid. In this manner, ambient residual compactions greater than 2% were produced. Pressures up to 90,000 psi and temperatures to 320°C were employed. The technique used for vitrification from the high pressure-temperature region was found to drastically affect the mechanical behavior. If the polystyrene was vitrified from the treatment region by lowering the temperature, the material exhibited enhanced yield strength, by up to 40%. If the polystyrene was quenched by raising the pressure, the samples exhibited much lower mechanical strength. While the mechanical behavior of temperature-vitrified samples is enhanced compared to the pressure-vitrified materials, their densities are comparable. The compaction achieved is primarily determined by the pressure applied as the polymer vitrifies. Thermal scanning behavior of the pressure-vitrified materials show endothermic and exothermic responses below Tg, while the temperature-vitrified materials do not. Annealing the compacted polystyrene at room temperature caused little change in density. However, at temperatures above 60°C, the density relaxed rapidly. Samples which had been temperature vitrified and annealed such that the compaction completely relaxed, still maintained the enhanced mechanical properties of the densified materials.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 168 (1973), S. 339-344 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Der Einfluß des Temperns auf Gestalt und Eingenschaften eines Poly-(äthylen-co-methacrylsäure)-ionomeren wird diskutiert. Die Dichte von Proben, die bei verschiedenen Temperaturen getempert worden waren, wurde gemessen und mit den Dichten, die aus kalorimetrischen Messungen unter der Annahme von Volumenadditivität berechnet wurden, verglichen. Bei mittleren Tempertemperaturen sind die Dichten, die aus kalorimetrischen Daten berechnet werden, höher als die unmittelbar gemessenen Dichten. Außerdem ändert sich bei mittleren Temperbedingungen die Röntgenstrahlenstreuung, die durch die Trennung ionischer Gruppen hervorgerufen wird, und die mehrfachen Maxima in den Schmelzendothermen gehen in ein einziges Maximum über. Es wird angenommen, daß diese Effekte durch eine Verdickung der Polyäthylenlamellen unter Ausbildung eines einheitlichen Faltungsflächenabstands verursacht werden, was eine Spannung der nicht kristallisierbaren Segmente zur Folge hat.
    Notes: The effect of annealing on the morphological structure and properties of a poly(ethylene-co-methacrylic acid) ionomer is discussed. The density of samples annealed at different temperatures was measured and compared with densities calculated from calorimetry measurements assuming additivity of component volumes. At intermediate annealing temperatures, densities calculated from calorimetry are higher than densities experimentally measured. Also, at intermediate annealing conditions the X-ray scattering associated with separation of ionic groups changes, and the multiple DSC melting endotherms merge into a single endotherm. These effects are thought to be caused by a thickening of polyethylene lamellae to a uniformly large fold distance which causes strain of the non crystallizable polymer segments and void formation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Letters 9 (1971), S. 689-694 
    ISSN: 0449-2986
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...