Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Renal Microperfusion ; Isotonic Reabsorption ; Tracer Permeability ; Glomerulo Tubular Balance ; Renale Mikroperfusion ; Isotone Resorption ; Tracerpermeabilität ; Glomerulotubuläre Balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the first experimental series proximal convolutions of the rat kidney were perfused with a modified Ringer solution and the isotonic fluid absorption was measured. In a second series the tubule was perfused with equilibrium solution which contained36Cl and the chloride permeability was determined. By the recollection method each individual tubule was perfused twice either at constant luminal diameter but different perfusion rates (10:30 or 6:16 nl/min) or at constant perfusion rates but different luminal diameters (20:30 μ). The perfusate was recollected at two different sites which were at least 500 μ distant from the infusion site. The isotonic fluid absorption as well as the36Cl permeability was unchanged when the tubule was distended from 20–30 μ. Both, however, increased about 20% when the perfusion rate was increased 3-fold. The data led to the following conclusions: 1. It is unlikely that there is a flow reactor type dependence of proximal tubular transport on flow rate. 2. The tubular distension cannot be responsible for the glomerulo-tubular balance. 3. It is more advantageous to relate permeability data of the rat nephron to tubular length. 4. In microperfusion experiments non steady sampling does not affect transepithelial fluxes per unit tubular length, provided that the pump delivery is constant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Hexose Transport ; Sodium Cotransport ; Kidney Tubules ; Sugar Specificity ; Kidney Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary With the technique of stop flow microperfusion with simultaneous capillary perfusion, the zero net flux transtubular concentration difference (Δc) of labelled sugars was measured. The following sequence of Δc values, which are a measure for the active transtubular transport rate, were evaluated:d-glucose ≅β methyl-d-glycoside 〉α-methyl-d-glycoside 〉d-galactose 〉3-O-methyl-glucose 〉d-allose. When 10−4 M phlorrhizin was given in the luminal perfusate the Δc's dropped to zero (±8%). Δc-values in the same range i.e. indicating no active transport, were found for:l-glucose,d-mannose, 2-deoxy-d-glucose,d-fructose,d-glucosamine, 6-deoxy-d-galactose (=d-fucose),d-ribose and the reference polyalcohold-mannitol. Inhibition of thed-galactose δc was achieved by 15 mmol/l of the following sugars: α-methyl-d-glycoside ≅d-glucose ≅ 6-deoxy-d-glucose 〉3-O-methyl-d-glucose an no significant inhibition byd-xylose andd-mannose. Against Δc of α-methyl-d-glucose the following inhibitory potency was observed:d-glucose 〉6-deoxy-d-glucose 〉3-O-methyl-d-glucose ≅d-galactose 〉d-xylose and no inhibition byd-mannose. When the ambient sodium was replaced by choline, the Δc values of all actively transported sugars dropped toward zero. An analysis of the Na+ dependence of the α-methyl-d-glycoside transport revealed that the sodium dependence is of the affinity type i.e. that onlyK m increased with increasing Na+ concentration whileV max remained almost constant. From these data one can conclude: 1. The Crane specificity, i.e. that only the α-position of the OH-group on carbon atom 2 is essential, which was found for the intestinal hexose transport holds for the rat proximal kidney tubule, too. 2. The hexose transport system in the rat works only when Na+-ions are present. The sodium ions augment the affinity of the hexose transport system for the hexoses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...