Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 250 (1974), S. 442-442 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR,?Bacteriochlorophyll (BChl) production in nonsulphur purple photosynthetic bacteria growing anaerobically is inversely related to light intensity, and introduction of O2 causes a rapid suppression of pigment synthesis. In a recent report1, Davies et al. summarise findings which lead them to ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 101 (1974), S. 187-210 
    ISSN: 1432-072X
    Keywords: Rhodopseudomonas palustris ; Photosynthetic Bacteria ; Aspartate Family Amino Acids ; Metabolic Regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The four amino acids of the “aspartate family” (l-lysine, l-methionine, l-threonine, and l-isoleucine) are produced in bacteria by a branched biosynthetic pathway. Regulation of synthesis of early common intermediates and of carbon flow through distal branches of the pathway requires operation of a number of subtle feedback controls, which are integrated so as to ensure “balanced” synthesis of the several end products. Earlier studies with nonsulfur purple photosynthetic bacteria were instrumental in revealing the existence of alternative regulatory schemes, and in this communication we report on the control pattern of a representative of this physiological group not previously investigated, Rhodopseudomonas palustris. The results obtained from study of the properties of four “key” regulatory enzymes of the aspartate family pathway (β-aspartokinase, homoserine dehydrogenase, homoserine kinase, and threonine deaminase) and of the effects of exogenous amino acids (i. e., the end products) on growth of the bacterium indicate that the control schema in Rps. palustris differs substantially from the schemes described for other Rhodopseudomonas species, but resembles the regulatory pattern observed in Rhodospirillum rubrum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 4 (1973), S. 423-434 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Energy-transducing membranes of the nonsulfur purple photosynthetic bacteria are known to contain several species of bacteriochlorophyll (BChl) complexes. The reaction-centre complex (rc-BChl) is the locus of the charge separation that provides the “poles” of the photochemical electron transport system, whereas the other complexes serve lightharvesting functions. This report summarizes an investigation of the general features of the control mechanisms governing synthesis of the several chlorophyll complexes inRhodopseudomonas capsulata. The results obtained indicate a close biosynthetic association between rc-BChl and one of the light-harvesting chlorophylls (complex I). Regulation of synthesis of light-harvesting complex II (during anaerobic photosynthetic growth) appears to be relatively independent, and intimately related to the “energy state” of the cell. Chlorophyll synthesis inR. capsulata cells growing aerobically in darkness was also studied. The presence of functional photosynthetic units in dark-grown cells, of very low BChl content, was clearly evidenced by demonstration of: the potentiality for resumption of anaerobic photosynthetic growth, light-induced oxidation of cytochrome552 in vivo, and high photophosphorylation capacity (relative to BChl) of membrane fragments from such cells. Synthesis of light-harvesting BChl complex II is particularly inhibited in cells growing in darkness with respiratory phosphorylation as the source of energy, and it is suggested that this complex is a primary “target” of the biosynthetic control devices activated by change of light intensity or presence of molecular oxygen during growth of nonsulfur purple bacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...