Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of global analysis and geometry 14 (1996), S. 263-300 
    ISSN: 1572-9060
    Keywords: Riemannian submersions ; Morse theory ; conformal deformation ; regular interval theorem ; 53 C 20 ; (58 E 05, 53 A 30, 55 R 10)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A generalized version of the regular interval theorem of Morse theory is proven using techniques from the theory of Riemannian submersions and conformal deformations. This approach provides an interesting link between Riemannian submersions (for real valued functions) and Morse theory. Let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,) → R be a smooth real valued function on a non-compact complete connected Riemannian manifold (M,g) such that df is bounded in norm away from zero. By pointwise conformally deforming g to pg, p = ∥d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]∥2, we show that (M,pg) is a complete Riemannian manifold, and that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,pg) → R is a surjective Riemannian submersion and a globally trivial fiber bundle over R. In particular, all of the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] are diffeomorphic, and M is globally diffeomorphic to the product bundle R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] −1(0) by a diffeomorphism F 0: R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0) → M that “straightens out” the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]. Moreover, we show that (F 0)*(pg) is a parameterized Riemannian product manifold on R×% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), i.e., a product manifold with a metric that varies on the fibers {t} × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0). Also, F 0: (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0),(F 0)*(pg)) → (M,g) is a conformal diffeomorphism between the Reimannian manifolds (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), (F 0)*(pg)) and (M,g),so that (M,g) is conformally equivalent to a parameterized Riemannian product manifold. The conformal diffeomorphism F 0 is an isometry between the Riemannian product manifold (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), 1 + g 0) (where g 0) is the metric induced by g on % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0) and (M,g) if and only if ∥d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]∥ = 1 and Hess % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] = 0.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Keywords: N-methyl-D-aspartate ; (+)-MK801 ; affinity ligands ; PCP ; 1,3-di(2-tolyl)guanidine ; sigma receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The electrophilic affinity ligand, (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrochloride {(+)-MK801-NCS} was characterized for its ability to acylate phencyclidine (PCP) and sigma binding sites in vivo. Initial studies, conducted with mouse brain membranes, characterized the binding sites labeled by [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). The Kd values of [3H]TCP for PCP site 1 (MK801-sensitive) and PCP site 2 (MK801-insensitive) were 12 nM and 68 nM, with Bmax values of 1442 and 734 fmol/mg protein, respectively. Mice were sacrificed 18–24 hours following intracerebroventricular administration of the acylator. The administration of (+)-MK801-NCS increased [3H]TCP binding to site 2, but not to site. 1. Although (+)-MK801-NCS decreased [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d; cbcyclohepten-5,10-imine maleate ([3H](+)-MK801) binding to site 1, it had no effect on [3H]TCP binding to site 1. Viewed collectively with other published data, these data support the hypothesis that PCP sites 1 and 2 are distinct binding sites, and that [3H]TCP and [3H](+)-MK801 label different domains of the PCP binding site associated with the NMDA receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...