Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Occupational Health and Environmental Toxicology  (3)
  • (E. coli outer membrane)  (2)
  • Frontal eye fields  (2)
  • 1
    ISSN: 0014-5793
    Keywords: (E. coli outer membrane) ; Activator protein ; DNA recognition ; OmpR ; Phosphorylation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0014-5793
    Keywords: (E. coli outer membrane) ; Activator protein ; DNA recognition ; Protein, OmpR
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 56 (1984), S. 275-278 
    ISSN: 1432-1106
    Keywords: Vestibular neurons ; Vestibulocollic reflex ; Precruciate cortex ; Frontal eye fields
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To study the neural basis for the regulation of vestibulocollic reflexes during voluntary head movements, the effects of stimulation of the precruciate cortex near the presylvian sulcus (neck area of the motor cortex) and the frontal eye fields (FEF) on vestibular neurons were studied in cerebellectomized cats anesthetized with α chloralose. Neurons were recorded in the medial and descending vestibular nuclei and antidromically identified from C1. Stimulation of the FEF and precruciate cortex fired 29 and 13% of neurons that did not exhibit spontaneous activity. About 80% of spontaneously discharging neurons were influenced by stimulation of either of the two. Stimulation of the precruciate cortex or FEF suppressed or facilitated labyrinthine evoked monosynaptic activation of vestibulospinal neurons, suggesting that the frontal cortical neurons have the properties to regulate the vestibulocollic reflexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Interstitiospinal neurons ; Pericruciate cortex ; Frontal eye fields ; Superior colliculus ; Neck muscle afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Interstitiospinal neurons were activated by antidromic stimulation of the spinal cord ventromedial funiculus at C1 and C4 in cerebellectomized cats under chlor alose anesthesia. Neurons responding only to C1 were classified as N cells and those responding both to C1 and C4 were classified as D cells, as in previous experiments (Fukushima et al. 1980a). Vestibular branching interstitiospinal and reticulospinal neurons were also identified as in the previous experiments. Stimulation of the ipsilateral pericruciate cortex evoked firing in 31% of N cells, 41% of D cells and 35% of vestibular branching neurons, while stimulation of the contralateral cortex excited 6% of N cells, 29% of D cells and 14% of vestibular branching neurons. Response latencies ranged from 2 to 15 ms after the effective pulse. By measuring the thresholds of activation of these neurons while changing the depth of the stimulating electrodes, and by mapping the cortical areas, it was shown that the lowest threshold areas were in the frontal eye fields and the anterior sigmoid gyrus near the presylvian sulcus (Area 6). Stimulation of the latter area often evoked neck or shoulder muscle contraction. Stimulation in the deep layers of the ipsilateral superior colliculus evoked firing in about 20% of interstitiospinal neurons and about 42% of vestibular branching neurons, with typical latencies 2–3 ms after the effective pulse, while stimulation of the contralateral superior colliculus was rarely effective. N cells and D cells responded similarly. Thresholds for activation were high in the intermediate tectal layers and declined as the electrodes entered the underlying tegmentum. This suggests that the superior colliculus is not the main source of synaptic inputs to these neurons. Low threshold points were found above the deep fiber layer when stimulating electrodes were inserted into the pretectum. Stimulation of the C2 biventer cervicis nerve excited about 8% of N cells, 18% of D cells, and 15% of vestibular branching neurons bilaterally with typical latencies around 10 ms. Similar results were obtained when C2 splenius nerves were stimulated. The fibers responsible for such excitation are probably group II, since stimuli stronger than 1.8 times threshold of the lowest threshold fibers were needed to evoke excitation. Response decrement was often observed when stimuli were repeated at 1/s, while no such decrement was observed at the rate of 1/3 s. When the convergence of cortical and labyrinthine excitatory inputs was studied, 36% of interstitiospinal neurons received single inputs either from the pericruciate cortex or from the labyrinth, 22% of neurons received convergent excitation from both and the remaining 42% did not respond to either stimulus. Although vestibular branching neurons rarely received labyrinthine inputs, they frequently showed convergence of excitation to stimulation of the frontal cortex, superior colliculus and vestibular nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 15 (1994), S. 513-518 
    ISSN: 0197-8462
    Keywords: subchronic exposure ; rotating magnetic fields ; neuroendocrine hormone ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We exposed rats to circularly polarized 50 Hz magnetic fields to determine if plasma testosterone concentration was affected. Previous experiments indicate that magnetic fields suppress the nighttime rise in melatonin, suggesting that other neuroendocrine changes might occur as well. Male Wistar-King rats were exposed almost continuously for 6 weeks to magnetic flux densities of 1,5, or 50 μT. Blood samples were obtained by decapitation at 12:00 h and 24:00 h. Plasma testosterone concentration showed a significant day-night difference, with a higher level at 12:00 h when studied in July and December, but the day-night difference disappeared when concentrations were studied in April. In three experiments, magnetic field exposure had no statistically significant effect on plasma testosterone levels compared with the sham-exposed groups. These findings indicate that 6 weeks of nearly continuous exposure to circularly polarized, 50 Hz magnetic fields did not change plasma testosterone concentration in rats. © 1994 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 7 (1986), S. 395-404 
    ISSN: 0197-8462
    Keywords: hair receptors ; afferent impulses ; neurophysiology ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: There are two possible mechanisms of effects of large electric fields on animals, one caused by the electric field at the body surface and the other caused by the electric current induced inside the body. The purpose of the present experiments was to investigate the former possibility by recording action potentials from afferent fibers innervating various sensory receptors in the cat's hindlimb. Cat hairs were attracted to the upper electrode when exposed to DC electric fields of 180 kV/m or greater, and action potentials were evoked in the afferent fibers innervating G1, G2, and down hair receptors. No action potentials were evoked in afferent fibers innervating type I, type II, field receptors, muscle spindles, or joint receptors. These results indicate that a strong DC electric field induced movement of the hairs, eventually evoked excitation of the hair receptors, but that other receptors located under the skin were not influenced by electric field exposure.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 10 (1989), S. 319-327 
    ISSN: 0197-8462
    Keywords: hairy and hairless skin ; relative permittivity of hair ; AC electric field ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The threshold intensity for detection of an AC electric field was studied in human subjects at several different temperatures and humidities. The dorsum and palm of the hand were exposed to fields, representing hairy and hairless skin, in order to clarify whether hair movement is critical for field detection. Experiments were carried out on human subjects (seven men and four women) during hot humid weather of July-August and dry cool air of October-November. Threshold values obtained in the summer were 30-65 kV/m for the hairy skin on the dorsum of the hand, while for the hairless skin on the palm the threshold was 〉 115 kV/m (highest field available due to limitations of the power supply). During the fall, the threshold was much higher than during the summer. We sought possible reasons for the difference and found that humidity was the main factor. Relative permittivity of woman's hair was then estimated by measuring capacitance of the hairs under dry (35% RH) and wet (85% RH) conditions at 20 °C. The values of relative permittivity obtained under these two conditions differed by several times the average. The differences in detection thresholds may be attributable to the different relative permittivities of the hairs under dry and wet conditions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...