Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • monodisperse  (4)
  • Guinea pig  (3)
  • Key words Dynamic swelling method  (3)
  • micron-size  (3)
  • (Polymorphonuclear neutrophil)  (2)
  • 74.50.+r  (2)
  • Amino acid sequence  (2)
Material
Years
Keywords
  • 11
    ISSN: 1435-1536
    Keywords: Key words Composite polymer particles ; core/shell ; seeded dispersion polymerization ; morphology ; monodisperse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Micron-sized monodispersed polymethyl methacrylate (PMMA)/polystyrene (PS) (PMMA/PS=2/1, wt ratio) composite particles consisting of PMMA-core and PS-shell were successfully produced by seeded dispersion polymerization of styrene in a methanol/water medium in the presence of about 2 μm-sized monodispersed PMMA particles. From the view point of thermodynamic equilibrium, such a morphology is difficult to form by usual seeded polymerization in a polar medium such as water. It is concluded that seeded dispersion polymerization in which almost all monomers and initiators exist in the medium has an advantage to produce core/shell polymer particles in which polymer layers accumulate in their order of the production regardless of the hydrophobicity of polymers, because of high viscosity in polymerizing particles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1435-1536
    Keywords: Key words Dynamic swelling method ; cross-linked polymer particles ; monomer adsorption ; micron-size ; monodisperse ; snow-man shape
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Micron-sized, monodispersed highly styrene-“adsorbed” particles having snow-man shape were prepared by the dynamic swelling method (DSM) with tightly cross-linked polymer seed particles as follows. First, 3.8 μm-sized monodispersed polystyrene (PS)/ poly(divinylbenzene) (PDVB) (PS/PDVB = 1/10 wt. ratio) composite particles produced by seeded polymerization utilizing DSM were dispersed in an ethanol/water (6/4, w/w) solution dissolving styrene monomer, and poly(vinyl alcohol) as a stabilizer. Second, water was subsequently added to the dispersion with a micro-feeder at a rate of 2.88 ml/h at room temperature. The cross-linked seed particles adsorbed a large amount of styrene onto the surfaces and resulted in mono-dispersed highly styrene-“adsorbed” snow-man shape particles having about 10 μm in diameter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1435-1536
    Keywords: Key words Dynamic swelling method ; Morphology ; Micron size ; Seeded polymerization ; Composite polymer particle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 0887-624X
    Keywords: dynamic swelling method ; particle ; monodisperse ; micron-size ; seeded polymerization ; emulsion polymerization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513-2519, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...