Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Primates ; Strepsirhines ; Aye-aye ; Lemurs ; Phylogeny ; ε-globin gene ; Molecular evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phylogenetic relationships among various primate groups were examined based on sequences of ε-globin genes. ε-globin genes were sequenced from five species of strepsirhine primates. These sequences were aligned and compared with other known primate ε-globin sequences, including data from two additional strepsirhine species, one species of tarsier, 19 species of New World monkeys (representing all extant genera), and five species of catarrhines. In addition, a 2-kb segment upstream of the ε-globin gene was sequenced in two of the five strepsirhines examined. This upstream sequence was aligned with five other species of primates for which data are available in this segment. Domestic rabbit and goat were used as outgroups. This analysis supports the monophyly of order Primates but does not support the traditional prosimian grouping of tarsiers, lorisoids, and lemuroids; rather it supports the sister grouping of tarsiers and anthropoids into Haplorhini and the sister grouping of lorisoids and lemuroids into Strepsirhini. The mouse lemur (Microcebus murinus) and dwarf lemur (Cheirogaleus medius) appear to be most closely related to each other, forming a clade with the lemuroids, and are probably not closely related to the lorisoids, as suggested by some morphological studies. Analysis of the ε-globin data supports the hypothesis that the aye-aye (Daubentonia madagascariensis) shares a sister-group relationship with other Malagasy strepsirhines (all being classified as lemuroids). Relationships among ceboids agree with findings from a previous ε-globin study in which fewer outgroup taxa were employed. Rates of molecular evolution were higher in lorisoids than in lemuroids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8604
    Keywords: ceboids ; strepsirhines ; primate phylogeny ; ε-globin gene ; molecular evolution ; molecular clock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied phylogenetic relationships of 39 primate species using sequences of the ε-globin gene. For 13 species, we also included flanking sequences 5′ of this locus. Parsimony analyses support the association of tarsiers with the anthropoids. Our analysis of New World monkeys supports the model in which the callitrichines form a clade with Aotus, Cebus, and Saimiri, with Cebus and Saimiri being sister taxa. However, analysis of the 5′ flanking sequences did not support grouping the atelines with Callicebus and the pitheciins. Our data support the classification of platyrrhines into three families, Cebidae (consisting of Cebus, Saimiri, Aotus, and the callitrichines; Atelidae—the atelines; and Pitheciidae—Callicebus and the pithiciins. The strepsirhines form well-defined lemuroid and lorisoid clades, with the cheirogaleids (dwarf and mouse lemurs) and Daubentonia (aye-aye) in the lemuroids, and the aye-aye being the most anciently derived. These results support the hypothesis that nonhuman primates of Madagascar descended from a single lineage. Local molecular clock calculations indicate that the divergence of lemuroid and lorisoid lineages, and the earliest diversification of lemuroids, occurred during the Eocene. The divergence of major lorisoid lineages was probably considerably more recent, possibly near the Miocene–Oligocene boundary. Within hominoids some estimated dates differ somewhat from those found with more extensive noncoding sequences in the β-globin cluster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...