Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (10)
  • carbonyl products  (2)
  • 1,1-disubstituted alkenes  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 24 (1996), S. 141-156 
    ISSN: 1573-0662
    Keywords: ozone ; 1,1-disubstituted alkenes ; carbonyl products ; ozone-alkene reaction mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Carbonyl products have been identified and their formation yields measured in experiments involving the gas phase reaction of ozone with 1,1-disubstituted alkenes at ambient T and p=1 atm. of air. Sufficient cyclohexane was added to scavenge the hydroxyl radical in order to minimize OH-alkene and OH-carbonyl reactions. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with the mechanism: O3+R1R2C=CH2→ α(HCHO+R1R2COO)+(1−α)(R1COR2+H2COO) where formaldehyde and the ketone R1 COR2 are the primary carbonyls and R1R2COO and H2COO are the corresponding biradicals. Measured values of α were 0.58–0.82 and indicate modest preferential formation of formaldehyde and the disubstituted biradical as compared to the ketone and the biradical H2COO. Carbonyls other than the primary carbonyls were identified. Their formation is discussed in terms of subsequent reactions of the disubstituted biradicals R1R2COO. Similarities and differences between disubstituted and monosubstituted biradicals are outlined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 27 (1997), S. 271-289 
    ISSN: 1573-0662
    Keywords: unsaturated esters ; unsaturated carbonyls ; alkenes ; ozone ; biogenic compounds ; carbonyl products ; reaction mechanisms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Carbonyl products have been identified and their formation yields measured in the gas phase reaction of ozone with unsaturated oxygenates in experiments carried out at ambient T, p = 1 atm. of purified humid air (RH = 50%) and with sufficient cyclohexane added to scavenge the hydroxyl radical. The compounds studied are the esters methyl acrylate, vinyl acetate and cis-3-hexenyl acetate, the carbonyl crotonaldehyde, the hydroxy-substituted diene linalool, the ether ethylvinyl ether and the keto-ether trans-4-methoxy-3-buten-2-one. The alkene 1-pentene was included for comparison. The nature and formation yields of the carbonyl products from this study and those measured in earlier work under the same conditions are compared to those of alkenes and are supportive of a reaction mechanism that is similar to that for the reaction of ozone with alkenes, i.e. O3 + R1R2C=CR3X → α(R1COR2 + R3XCOO) + (1 − α)(R3COX + R1R2COO), where Ri are the alkyl substituents, X is the oxygen-containing substituent (–CHO for aldehydes; –C(O)R for ketones; –C(O)OR and –OC(O)R for esters; –OH and hydroxyalkyl for alcohols; and –OR for ethers), R1COR2 is the primary carbonyl, R3COX is the other primary product and R1R2COO and R3XCOO are the carbonyl oxide biradicals. The biradicals lead to carbonyls in reactions that are also analogous to those involved in carbonyl formation from biradicals in the ozone-alkene reaction. These features make it possible to predict the nature and formation yields of the major carbonyl products of the reaction of ozone with unsaturated oxygenates that may be components of biogenic emissions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 911-918 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with eight alkenes including six 1,1-disubstituted alkenes has been investigated at ambient T (285-298 K) and p = 1 atm. of air. The reaction rate constants are, in units of 10-18 cm3 molecule-1 s-1, 9.50 ± 1.23 for 3-methyl-1-butane, 13.1. ± 1.8 for 2-methyl-1-pentene, 11.3 ± 3.2 for 2-methyl-1,3-butadiene (isoprene), 7.75 ± 1.08 for 2,3,3-trimethyl-1-butene, 3.02 ± 0.52 for 3-methyl-2-isopropyl-1-butene, 3.98 ± 0.43 for 3,4-diethyl-2-hexene, 1.39 ± 17 for 2,4,4-trimethyl-2-pentene, and 〉370 for (cis + trans)-3,4-dimethyl-3-hexene. For isoprene, results from this study and earlier literature data are consistent with: k (cm3 molecule-1 s-1) = 5.59 (+ 3.51, &minus 2.16) × 10-15 e(-3606±279/RT), n = 28, and R = 0.930. The reactivity of the other alkenes, six of which have not been studied before, is discussed in terms of alkyl substituent inductive and steric effects. For alkenes (except 1,1-disubstituted alkenes) that bear H, CH3, and C2H5 substituents, reactivity towards ozone is related to the alkene ionization potential: In k〈(10-18 cm3 molecule-1 s-1) = (32.89 ± 1.84) - (3.09 ± 0.20) IP (eV), n = 12, and R = 0.979. This relationship overpredicts the reactivity of C≥3 1-alkenes, of 1,1-disubstituted alkenes, and of alkenes with bulky substituents, for which reactivity towards ozone is lower due to substituent steric effects. The atmospheric persistence of the alkenes studied is briefly discussed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 1185-1191 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with unsaturated alcohols in air has been investigated at atmospheric pressure and ambient temperature (288-291 K). Cyclohexane was added to scavenge the hydroxyl radical which forms as a product of the ozone-unsaturated alcohol reaction. The reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 16.2 ± 0.7 for (±) 3-buten-2-ol, 17.9 ± 1.8 for 1-penten-3-ol, 10.0 ± 0.3 for 2-methyl-3-buten-2-ol, 169 ± 25 for cis-2 penten-1-ol, and 251 ± 41 for 2-buten-1-ol (mixture of isomers). Substituent effects on reactivity are discussed. The reactivity of unsaturated alcohols towards ozone is similar to that of their alkene structural homologues. Implications of these results with respect to the atmospheric persistence of unsaturated alcohols are briefly discussed. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 373-382 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with the unsaturated oxygenates trans-2-hexenal, trans-2-hexenyl acetate, ethylvinyl ketone, and 6-methyl-5-hepten-2-one, which are components of biogenic emissions and/or close structural homologues thereof, has been investigated at atmospheric pressure and ambient temperature (286-291 K) and humidity (RH = 55 ± 10%). Reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 1.28 ± 0.28 for trans-2-hexenal, 21.8 ± 2.8 for trans-2-hexenyl acetate, and 394 ± 40 for 6-methyl-5-hepten-2-one. Carbonyl product formation yields, measured with sufficient cyclohexane added to scavenge the hydroxyl radical, are 0.53 ± 0.06 for n-butanal and 0.56 ± 0.04 for glyoxal from trans-2-hexenal, 0.47 ± 0.02 for n-butanal and 0.58 ± 0.14 for 1-oxoethyl acetate from trans-2-hexenyl acetate, 0.55 ± 0.07 for formaldehyde and 0.44 ± 0.03 for 2-oxobutanal from ethylvinyl ketone, and 0.28 ± 0.02 for acetone from 6-methyl-5-hepten-2-one. Reaction mechanisms are outlined and the atmospheric persistence of the compounds studied is briefly discussed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 21-29 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with a series of unsaturated oxygenates and with 1-pentene has been studied at ambient T (287-296 K) and p=1 atm. of air. Reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 0.22±0.05 for 2 (5H)-furanone, 1.08±0.20 for methacrolein, 1.74±0.20 for crotonaldehyde, 5.84±0.39 for methylvinyl ketone, 1.05±0.15 for methyl acrylate, 3.20±0.47 for vinyl acetate, 59.0±8.7 for cis-3-hexenyl acetate, 154±30 for ethylvinyl ether, ≥(315±23) for linalool, and 10.9±1.4 for 1-pentene. The results are compared to literature data for the compounds studied and for other unsaturated oxygenates, and are discussed in terms of reactivity toward ozone as a function of the nature, number, and position of the oxygen-containing substituents (SINGLEBOND)CHO, (SINGLEBOND)C(O)R, (SINGLEBOND)C(O)OR, and (SINGLEBOND)OC(O)R. Atmospheric implications are briefly examined. © 1998 John Wiley & Sons, Inc. Int. J Chem Kinet: 30: 21-29, 1998.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 29 (1997), S. 855-860 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with vinylcyclohexane and methylene cyclohexane has been investigated at ambient T and p=1 atm of air in the presence of sufficient cyclo-hexane or 2-propanol added to scavenge OH. The reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 7.52±0.97 for vinylcyclohexane (T=292±2 K) and 10.6±1.9 for methylene cyclohexane (T=293±2 K). Carbonyl reaction products were cyclohexyl meth-anal (0.62±0.03) and formaldehyde (0.47±0.04) from vinylcyclohexane and cyclohexanone (0.55±0.10) and formaldehyde (0.60±0.05) from methylene cyclohexane, where the yields given in parentheses are expressed as carbonyl formed, ppb/reacted ozone, ppb. The sum of the yields of the primary carbonyls is close to the value of 1.0 that is consistent with the simple mechanisms: O3+cyclo(C6H11)-CH(DOUBLEBOND)CH2→α(HCHO+cyclo(C6H11)CHOO)+(1-α)(HCHOO+cyclo(C6H11)CHO) for vinylcyclohexane and O3+(CH2)5C(DOUBLEBOND)CH2→α(HCHO +(CH2)5COO)+(1-α)(HCHOO+(CH2)5C(DOUBLEBOND)O) for methylene cyclohexane. The coefficients α are 0.43±0.10 for vinylcyclohexane and 0.52±0.05 for methylene cyclohexane, i.e., (formaldehyde+the substituted biradical) and (HCHOO+cyclohexyl methanal or cyclo-hexanone) are formed in ca. equal yields. Reaction rate constants, carbonyl yields, and reaction mechanisms are compared to those for alkene structural homologues. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 855-860, 1997
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 461-466 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of ozone with eight 1,2-disubstituted alkenes has been investigated at ambient temperature (T = 286-296 K) and p = 1 atm. of air. The reaction rate constants, in units of 10-18 cm3 molecule-1s-1, are 144 ± 17 for cis-3-hexene, 157 ± 25 for trans-3-hexene, 89.8 ± 9.7 for cis-4-octene, 131 ± 15 for trans-4-octene, 114 ± 13 for cis-5-decene, ≥ 130 for trans-5-decene, 38.3 ± 5.0 for trans-2.5-dimethyl-3-hexene, and 40.3 ± 6.7 for trans-2.2-dimethyl-3-hexene. Substituent effects on alkene reactivity are examined. Cis-1,2-disubstituted alkenes are less reactive than the corresponding trans isomers. The 1,2-disubstituted alkenes that bear bulky substituents (substitution at the 3-carbon) are ca. 3 times less reactive than the corresponding n-alkyl substituted compounds. The atmospheric persistence of 1,2-disubstituted alkenes is briefly discussed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 25 (1993), S. 783-794 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the gas-phase reaction of ozone with unsaturated alcohols, carbonyls, and esters in air have been investigated at atmospheric pressure, ambient temperature (285-295 K), and in the presence of sufficient cyclohexane to scavenge the hydroxyl radical which forms as a product of the ozone-unsaturated compound reaction. The reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 0.26 ± 0.05 for acrolein, 1.07 ± 0.05 for 2-ethyl acrolein, 6.0 ± 0.4 for ethyl vinyl ketone, 4.9 ± 0.4 for 3-buten-1-ol, 14.4 ± 2.0 for allyl alcohol, 105 ± 7 for cis-3-hexen-1-ol, 7.5 ± 0.9 for methyl methacrylate, 2.9 ± 0.3 for vinyl acetate, 4.4 ± 0.3 for methyl crotonate, and 8.1 ± 0.3 for the 1,1-disubstituted alkene 2-ethyl-1-butene. Substituent effects on reactivity are discussed by comparison with alkenes and indicate that the reactivity of unsaturated alcohols is the same as that of alkene structural homologues and that the  - C(O)OR,  - C(O)R, and  - CHO groups decrease the reactivity towards ozone as compared to alkyl groups. Estimates are made of the atmospheric persistence of these unsaturated compounds using the kinetic data obtained in this study as input to structure-reactivity and linear free-energy relationships. © 1993 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 25 (1993), S. 921-929 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 = C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10-12 cm3 molecule-1 s-1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10-12 cm3 molecule-1 s-1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...