Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0044-2313
    Keywords: N,N-Dichloromethylsulfonammonium salts ; crystal structure of CH3S(O)2NCl2 ; vibrational spectra ; 1H ; 13C ; 19F NMR ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: New N,N-Dichloromethylsulfonammonium Salts CH3S(O)2NCl2X+MF6- (X = CH3, Cl, F; M = As, Sb) and Crystal Structure of CH3S(O)2NCl2The preparations of new dichlorammonium salts CH3S(O)2NCl2X+MF6- (X = CH3, Cl, F; M = As, Sb) and of CH3S(O)2NCl2 by oxidative halogenation respectively methylation are reported. The thermolabil compounds are characterized by IR, Raman, 1H, 13C, 19F NMR spectroscopy. N,N-Dichlormethylsulfonamid CH3S(O)2NCl2 crystallizes at 173(1) K in the orthorhombic space group Pnma with a = 615.1(3) pm, b = 937.3(5) pm, c = 970.3(5) pm and Z = 4.
    Notes: Die Darstellung einer Reihe von Dichlor ammoniumsalzen des Typs CH3S(O)2NCl2X+MF6- (X = CH3, Cl, F; M = As, Sb) wird angegeben. Die Salze werden durch oxidative Halogenierung bzw. Methylierung von CH3S(O)2NCl2 erhalten. Die Charakterisierung der thermolabilen Verbindungen erfolgte mittels IR-, Raman-sowie Multikern-NMR-Spektroskopie. Die Einkristallröntgenstrukturanalyse von N,N-Dichlormethylsulfonamid CH3S(O)2NCl2 bei 173(1) K ergab: orthorhombische Raum gruppe Pnma mit a = 615,1(3) pm, b = 937,3(5) pm, c = 970,3(5) pm und Z = 4.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0268-2605
    Keywords: Diorganotin dipeptides ; X-ray structure determination ; 13C ; 119Sn NMR ; IR ; Mössbauer ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dipeptide complexes of the diethyltin(IV) moiety, Et2SnL, have been synthesized, H2L being glycylglycine (H2GlyGly), glycylalanine (H2GlyAla), alanylalanine (H2AlaAla), glycylvaline (H2GlyVal), valylvaline (H2ValVal), glycylmethionine (H2GlyMet), glycyltyrosine (H2GlyTyr). The crystal and molecular structure of the complex Et2SnGlyTyr has been determined by singlecrystal X-ray diffraction. It consists of monomeric units, with the tin atom having a considerably distorted trigonal bipyramidal environment. The dipeptide acts as a tridentate ligand bonding the tin of the C2Sn fragment (equatorial carbon atoms) with the peptide nitrogen atom (equatorial) and axial (monodentate) carboxyl oxygen and amino nitrogen atoms, into a monomeric unit. Bond lengths and angles are reported. Infrared spectroscopic data show the occurrence of monodentate carboxyl in all solid compounds, as well as in methanol solutions of some representative complexes. 119Sn Mössbauer spectroscopic data, and their rationalization through point-charge model (literal version) calculations of the parameter nuclear quadrupole splitting (ΔE) confirm the general occurrence of trigonal bipyramidal structures of the Et2SnGlyTyr type, in the solid state, and give evidence of variations of the C—Sn—C angle in the individual Et2SnL species. Monomers occur in CH3OH solution as suggested by osmometric measurements. 13C and 119Sn NMR spectroscopic data in CD3OD show the persistence of the solid-state structures also in the solution phase, where the order of magnitude of the C—Sn—C angles, as estimated from the coupling constants |1J(119Sn,13C)|, corresponds to that shown by Et2SnGlyTyr in the solid state. 119Sn Mössbauer parameters of Et2SnGlyGly in frozen CH3OH solution are consistent with the assumptions from the NMR studies.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...