Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 13C NMR relaxation  (1)
  • Secondary chemical shifts  (1)
  • 1
    ISSN: 1573-5001
    Keywords: Neocarzinostatin ; Backbone dynamics ; Side-chain dynamics ; 13C NMR relaxation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping Cα resonances and for 11 threonine Cβ single resonances. Except for three Cα relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C−H fragments exhibit fast (τe 〈 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and τe along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The β-ribbon comprising residues 37 to 47 is spatially restricted, with relatively large τe values in its hairpin region. The other β-ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain Cβ must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, τe and R2ex) or (S infslow sup2 , S inffast sup2 and τslow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time τe for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1−S2)× τe is nearly independent of τe for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5001
    Keywords: Neocarzinostatin ; 13C NMR ; Resonance assignments ; Secondary chemical shifts ; Editing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Nearly complete assignment of the protonated carbon resonances of apo-neocarzinostatin, 113-amino acid antitumor antibiotic carrier protein, has been achieved at natural 13C abundance using heteronuclear 2D experiments. Most of the cross peaks in the proton-carbon correlation map were identified by the combined use of HMQC, HMQC-RELAY and HMQC-NOESY spectra, using already published proton chemical shifts. However, double-DEPT and triple-quantum experiments had to be performed for the edition of CH and CH2 side-chain groups, respectively, which were hardly visible on HMQC-type maps. The triple-quantum pulse sequence was adapted from its original scheme to be applicable to a natural abundance sample. The correlation between carbon chemical shifts and the apo-neocarzinostatin structure is discussed. In particular, 13C alpha secondary shifts correlate well with the backbone conformation. These shifts also yield information about the main-chain flexibility of the protein. Assignments reported herein will be used further for interpretation of carbon relaxation times in a study of the internal dynamics of apo-neocarzinostatin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...