Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 15N labeling of guanine and adenine  (1)
  • 2D NMR  (1)
  • side chain–main chain hydrogen bonds  (1)
  • 1
    ISSN: 1573-5001
    Schlagwort(e): Site-specific labeling of RNA ; 15N labeling of guanine and adenine ; Inosine-for-guanine substitution
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract The secondary structure of a recently identified ATP-binding RNA aptamer consists of apurine-rich 11-residue internal loop positioned opposite a single guanine bulge flanked oneither side by helical stem segments. The ATP ligand targets the internal loop and bulgedomains, inducing a structural transition in this RNA segment on complex formation.Specifically, 10 new slowly exchanging proton resonances in the imino, amino and sugarhydroxyl chemical shift range are observed on AMP–RNA aptamer complex formation.This paper outlines site-specific labeling approaches to identify slowly exchanging imino(guanine) and amino (guanine and adenine) protons in internal loop and bulge segments ofcompact RNA folds such as found in the AMP–RNA aptamer complex. One approachincorporates 15N-labeled guanine (N1 imino and N2 amino positions) and 15N-labeledadenine (N6 amino position), one residue at a time, in the AMP-binding RNA aptamer, withlabeling incorporation through chemical synthesis facilitated by generating the aptamer fromtwo separate strands. The unambiguous assignments deduced from the 15N labeling studieshave been verified from an independent labeling strategy where individual guanines in theinternal loop have been replaced, one at a time, by inosines and assignments were made onthe basis of the large 2 ppm downfield shift of the guanine imino protons on inosinesubstitution. The strengths and limitations of the inosine-for-guanine substitution approachemerge from our studies on the AMP–RNA aptamer complex. The assignment of theinternal loop and bulge imino and amino protons was critical in our efforts to define thesolution structure of the AMP–RNA aptamer complex since these slowly exchangingprotons exhibit a large number of long-range intramolecular NOEs within the RNA, as wellas intermolecular NOEs to the AMP in the complex. The current application of specific 15Nand inosine labeling approaches for exchangeable imino and amino proton assignments in thenonhelical segments of an RNA aptamer complex in our laboratory complements selective 2Hand 13C approaches to assign nonexchangeable base and sugar protons in RNA andligand–RNA complexes reported in the literature.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5001
    Schlagwort(e): FKBP12 ; NMR detection ; sensitivity enhancement ; side chain–main chain hydrogen bonds
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract We describe the direct observation of very weak side chain–main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the hydrogen acceptor side chain carboxylate carbon 13CO2 δ of glutamate 54 and the hydrogen donor backbone amide 15N of methionine 49 in a 12 kDa protein, human FKBP12, is detected via the trans-hydrogen bond 3h J NCO2δ coupling by employing a novel sensitivity-enhanced HNCO-type experiment, CPD-HNCO. The 3h J NCO2δ coupling constant appears to be even smaller than the average value of backbone 3h J NC′ couplings, consistent with more extensive local dynamics in protein side chains.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of biomolecular NMR 1 (1991), S. 323-347 
    ISSN: 1573-5001
    Schlagwort(e): Drug-DNA interaction ; Actinomycin ; Restrained molecular dynamics ; Nuclear Overhauser effect ; NOE ; 2D NMR
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Summary The actinomycin-D-d(A1-A2-A3-G4-C5-T6-T7-T8) complex (1 drug per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. We have assigned the exchangeable and nonexchangeable proton resonances of Act and d(A3GCT3) in the complex and identified the intermolecular proton-proton NOES that define the alignment of the antitumor agent at its binding site on duplex DNA. The molecular dynamics calculations were guided by 70 intermolecular distance constraints between Act and nucleic acid protons in the complex. The phenoxazone chromophore of Act intercalates at the (G-C)I·(G-C)II step in the d(A3GCT3) duplex with the phenoxazone ring stacking selectively with the G4I and G4II purine bases but not with C4I and C4II pyrimidine bases at the intercalation site. There is a pronounced unwinding between the A3·T6 and G4·C5 base pairs which are the next steps located in either direction from the intercalation site in the Act-d(A3GCT3) complex. The Act cyclic pentapeptide ring conformations in the complex are similar to those for free Act in the crystal except for a change in orientation of the ester linkage connecting meVal and Thr residues. The cyclic pentapeptide rings are positioned in the minor groove with the established G-C sequence specificity of binding associated with intermolecular hydrogen bonds between the Thr backbone CO and NH groups to the NH2-2 and N3 positions of guanosine, respectively. Complex formation is also stabilized by van der Waals interactions between nonpolar groups on the cyclic pentapeptide rings and the sugar residues and base pair edges lining the widened minor groove of the (A3-G4-C5-T6)I·(A3-G4-C5-T6)II binding site segment of the DNA helix.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...