Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: Delftia acidovorans MC1 ; 2,4-dichlorophenoxyacetic acid (2,4-D) ; 2-(2,4-dichlorophenoxy) propanoic acid (2,4-DP) ; effect of tfdK gene ; simultaneous utilization of 2,4-D and 2,4-DP ; uptake characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 136 (1983), S. 203-208 
    ISSN: 1432-072X
    Keywords: Maximum growth yield ; Mixed substrate utilization ; Glucose ; Formate ; Transient-state cultivation ; Hansenula polymorpha
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The experimentally determined growth yield on glucose under aerobic conditions is approximately 0.5 g/g, but on the basis of the carbon content a value of 0.71 g/g should be the upper limit if carbon conversion is improved by the use of an additional energy source. This assumption was investigated with the methylotrophic yeast Hansenula polymorpha MH 20. Formate served as an additional energy source. The growth yield experiments were performed with a transient-state fermentation technique in which formate was fed via an increasing concentration gradient to a culture growing continuously on glucose. As a result the growth yield on glucose was improve, the extent was dependent on the formate feeding rate, i.e. the slope of this formate gradient. The predicted maximum growth yield of 0.7 g/g was obtained at a slope of the formate gradient of 0.21 g/l·h at a glucose concentration of about 1 g/l. Steeper gradients did not further improve this value, but rather impaired the growth yield due to the appearence of a high residual formate concentration in the fermentation medium. The yield patterns are influenced by the culture pH, a value of at least 4.8 is necessary to achieve the maximum growth yield on glucose. At lower pH formate became increasingly toxic. The ratio of formate to glucose necessary to obtain the maximum yield coefficient was 1...1.6:1 (in grams). On the basis of the energy content of formate a ratio of 1.2...1 (P/O=2) was calculated to substitute the part of glucose which is endoxidized for energy generation. Deviations from this value are explained in terms of the manner of uptake and uncoupling property of formic acid/formate and the existence of a second, formate-“wasting” enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Mixed substrate utilization ; 14C-Methanol glucose ; Efficiency of methanol dissimilation ; Improvement of growth yield ; Hansenula polymorpha
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments were performed to reveal the extent to which individual heterotrophic substrates of a mixture contribute to the overall carbon and energy metabolism. For this reason Hansenula polymorpha MH 20 was chemostatically (C-limited) cultivated at different growth rates on mixtures of methanol and glucose fed at proportions of 3:1 and 1:3 (in weight units), respectively. The distributions of 14C-carbon from methanol in biomass as well as carbon dioxide (and supernatant) fractions were determined. From these results it followed, firstly, that energy derived from methanol dissimilation was used in part for the incorporation of glucose carbon, resulting in carbon conversion efficiencies for this substrate equivalent to yield coefficients of 0.61–0.69 g/g. Secondly, the growth yield data revealed that the efficiency of methanol conversion had to be increased in order to account for the experimentally determined yield figures. This was further confirmed by theoretical treatment of the growth yield data which showed that these could only be obtained if P/O-quotients for methanol conversion similar to those for glucose, i.e. 2.0–2.5, were considered. The latter property was regarded as the main reason for the observed improvement of growth yield accompanying the simultaneous utilization of methanol and glucose in this yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...