Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cerebral cortex  (2)
  • energy metabolism  (2)
  • 21.10.-k Properties of nuclei; nuclear energy levels  (1)
  • 21.10.Ft Charge distribution  (1)
  • 1
    ISSN: 1573-6903
    Keywords: Cerebral cortex ; ATP-ases ; synaptic plasma membranes ; naloxone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Naloxone is a specific competitive antagonist of morphine, acting on opiate receptors, located on neuronal membranes. The effects of in vivo administration of naloxone on energy-consuming non-mitochondrial ATP-ases were studied in two different types of synaptic plasma membranes from rat cerebral cortex, known to contain a high density of opiate receptors. The enzyme activities of Na+, K+-ATP-ase, Ca2+, Mg2+-ATP-ase and Mg2+-ATP-ase and of acetylcholinesterase (AChE) were evaluated on synaptic plasma membranes obtained from control and treated animals with effective dose of naloxone (12μg · kg−1 i.m. 30 minutes). In control (vehicle-treated) animals specific enzyme activities assayed on these two types of synaptic plasma membranes are different, being higher on synaptic plasma membranes of II type than of I type, because the first fraction is more enriched in synaptic plasma membranes. The acute treatment with naloxone produced a significant decrease in Ca2+,Mg2+-ATP-ase activity and an increase in AChE activity, only in synaptic plasma membranes of II type. The decrease of Ca2+,Mg2+-ATP-ase enzymatic activity and the increased AChE activity are related to the interference of the drug on Ca2+ homeostasis in synaptosoplasm, that leads to the activation of calcium-dependent processes, i.e. the extrusion of neurotransmitter. These findings give further evidence that pharmacodynamic characteristics of naloxone are also related to increase [Ca2+] i , interfering with enzyme systems (Ca2+,Mg2+-ATP-ase) and that this drug increases acetylcholine catabolism in synaptic plasma membranes of cerebral cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Keywords: Synaptosomal subpopulations ; “large” and “small” synaptosomes ; energy metabolism ; enzymes ; L-acetylcarnitine treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The maximum rate (Vmax) of some enzyme activities related to glycolysis, Krebs' cycle, acetylcholine catabolism and amino acid metabolism were evaluated in different types of synaptosomes obtained from rat hippocampus. The enzyme characterization was performed on two synaptosomal populations defined as “large” and “small” synaptosomes, supposed to originate mainly from the granule cell glutamatergic mossy fiber endings and small cholinergic nerve endings mainly arising from septohippocampal fiber synapses, involved with cognitive processes. Thus, this is an unique model of pharmacological significance to study the selective action of drugs on energy metabolism of hippocampus and the sub-chronic i.p. treatement with L-acetylcarnitine at two different dose levels (30 and 60 mg · kg−1, 5 day a week, for 4 weeks) was performed. In control animals, the results indicate that these two hippocampal synaptosomal populations differ for the potential catalytic activities of enzymes of the main metabolic pathways related to energy metabolism. This energetic micro-heterogeneity may cause their different behaviour during both physiopathological events and pharmacological treatment, because of different sensitivity of neurons. Therefore, the micro-heterogeneity of brain synaptosomes must be considered when the effect of a pharmacological treatment is to be evaluated. In fact, the in vivo administration of L-acetylcarnitine affects some specific enzyme activities, suggesting a specific molecular trigger mode of action on citrate synthase (Krebs' cycle) and glutamate-pyruvate-transaminase (glutamate metabolism), but mainly of “small” synaptosomal populations, suggesting a specific synaptic trigger site of action. These observations on various types of hippocampal synaptosomes confirm their different metabolic machinery and their different sensitivity to pharmacological treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 23 (1998), S. 1485-1491 
    ISSN: 1573-6903
    Keywords: Cerebral cortex ; energy metabolism ; enzymes ; L-acetylcarnitine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The maximum rate (Vmax) of some mitochondrial enzymatic activities related to the energy transduction (citrate synthase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, cytochrome oxidase) and amino acid metabolism (glutamate dehydrogenase, glutamate-pyruvate-transaminase, glutamate-oxaloacetate-transaminase) was evaluated in non-synaptic (free) and intra-synaptic mitochondria from rat brain cerebral cortex. Three types of mitochondria were isolated from rats subjected to i.p. treatment with L-acetylcarnitine at two different doses (30 and 60 mg·kg−1, 28 days, 5 days/week). In control (vehicle-treated) animals, enzyme activities are differently expressed in non-synaptic mitochondria respect to intra-synaptic “light” and “heavy” ones. In fact, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, glutamate-pyruvate-transaminase and glutamate-oxaloacetate-transaminase are lower, while citrate synthase, cytochrome oxidase and glutamate dehydrogenase are higher in intra-synaptic mitochondria than in non-synaptic ones. This confirms that in various types of brain mitochondria a different metabolic machinery exists, due to their location in vivo. Treatment with L-acetylcarnitine decreased citrate synthase and glutamate dehydrogenase activities, while increased cytochrome oxidase and α-ketoglutarate dehydrogenase activities only in intra-synaptic mitochondria. Therefore in vivo administration of L-acetylcarnitine mainly affects some specific enzyme activities, suggesting a specific molecular trigger mode of action and only of the intra-synaptic mitochondria, suggesting a specific subcellular trigger site of action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1434-601X
    Keywords: 21.10.Ft Charge distribution ; 21.10.-k Properties of nuclei; nuclear energy levels ; 21.65.+f Nuclear matter ; 29.40.Mc Scintillation detectors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract. We report the results of an experimental search for spontaneous transition of nuclei from ordinary to superdense state in NaI(Tl). New limits on the superdense-state parameters are presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...