Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 164 (1985), S. 439-447 
    ISSN: 1432-2048
    Keywords: Cytoskeleton ; Ethylene (microtubule reorientation) ; Helix (microtubule) ; Microtubule ; Pisum (microtubule, ethylene) ; Vigna (microtubule, ethylene)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Entire microtubule arrays, within outer cortical and epidermal cells of pea epicotyl and mung-bean hypocotyl, have been visualized by indirect immunofluorescence. In all cells the microtubule arrangement can be interpreted as being a single multistart helix of variable pitch. In control cells the predominant pattern is a tightly compressed helix with the microtubules consequently in a net transverse direction with respect to the cell axis. Occasionally some cells show an oblique helix and rare cells show a longitudinal array which may be interpreted as a steeply pitched helix. By contrast in ethylene treated tissue, many cells show net longitudinal and oblique arrays of microtubules and few show transverse arrays. Similar effects can be induced by high osmolality. It is suggested that the plant cortical cytoskeleton is an integral unit, capable of wholesale reorientation in response to environmental signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 211 (2000), S. 165-171 
    ISSN: 1615-6102
    Keywords: 3,3′-Dihexyloxacarbocyanine iodide ; Plasmodesma ; Pit field ; Nicotiana cle elandii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plasmodesmata are complex channels within the plant cell wall, which create plasma membrane and symplastic continuity between neighbouring cells. To detect plasmodesmata in cell wall preparations fromNicotiana cle elandii, we have used 3,3′-dihexyl-oxacarbocyanine iodide (DiOC6), a cationic amphiphilic fluorescent probe, widely employed for general studies of membrane structure and dynamics. Punctate fluorescent staining was readily seen in pit fields, small depressions within the cell wall known to be rich in plasmodesmata. Scanning electron microscopy was used to demonstrate that the punctate staining corresponded to plasmodesmata. Treatment of cell wall fragments with chloroform-methanol to remove lipids did not alter the staining of plasmodesmata. In contrast, pronase E-sodium dodecyl sulfate treatment completely abolished staining, indicating that the DiOC6 labelling of plasmodesmata may be protein rather than lipid specific. Although not membrane mediated, DiOC6 staining of plasmodesmata is a simple, rapid, and specific tool for the detection of plasmodesmata in isolated cell walls and will prove useful for studies of plasmodesmal location, structure, and composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Amphidinium ; Dinoflagellates ; Cytoskeleton ; Gymnodinium ; Immunofluorescence ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The sub-thecal microtubular cytoskeleton of the dinoflagellatesAmphidinium rhynchocephalum, Gymnodinium sanguineum, andGymnodinium. sp has been investigated by indirect immunofluorescence microscopy. In these cells, the majority of cytoskeletal microtubules lie in the anterior-posterior plane. These longitudinal microtubules clearly originate from one of two radially arranged microtubular bands that correspond in location with the anterior and posterior edge of the cingolar depression. Despite the morphological variability of these gymnodinioid dinoflagellates, our data indicate that the microtubular cytoskeleton perfectly reflects the spatial patterning of the epicone and hypocone in each cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...