Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 129 (1997), S. 1-14 
    ISSN: 1432-2072
    Keywords: Key words Caffeine ; Xanthines ; Adenosine antagonist ; Phosphodiesterase inhibition ; Operant behavior ; Respiration ; Cardiovascular system ; Nonhuman primates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Caffeine and related xanthines can have significant behavioral effects on measures of locomotor activity, schedule-controlled behavior, drug self-administration, and learning and memory. Xanthines also produce numerous physiological effects including positive inotropic and chronotropic effects on the heart, decreased airway resistance in the lung, and respiratory stimulation. Due to the widespread use of xanthines as constituents of food and beverages and as therapeutic drugs, identification of mechanisms that mediate their pharmacological effects has considerable relevance for drug development and therapeutics. Two primary mechanisms involving the cyclic nucleotide system have been implicated as the bases for the effects of xanthines in the CNS. Many xanthines bind to specific adenosine recognition sites and block the actions of adenosine. Xanthines also inhibit cyclic nucleotide phosphodiesterases, the enzymes responsible for the hydrolytic inactivation of cyclic AMP and cyclic GMP. Recent research in nonhuman primates has characterized the behavioral, respiratory and cardiovascular effects of a number of xanthines and related drugs differing in affinity at different subtypes of adenosine receptors and in capacity to inhibit different molecular forms of PDE. The behavioral-stimulant effects of xanthines appear to be mediated principally by their adenosine-antagonist actions and may be limited by PDE inhibition. The respiratory-stimulant and cardiac effects of xanthines, on the other hand, appear to be linked more closely to their PDE- inhibiting actions than to adenosine antagonism. Converging lines of evidence suggest that adenosine A2 and cAMP-specific (possibly type IV) PDE mechanisms play especially prominent roles in mediating the behavioral and physiological effects of xanthines in nonhuman primates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 147 (1999), S. 257-265 
    ISSN: 1432-2072
    Keywords: Key words Cocaine ; Drug discrimination ; κ Receptor ; Morphine ; µ Receptor ; Training dose ; U50 ; 488
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Rationale: The growing abuse of cocaine combined with morphine-like opiates (”speedballs”) in human addicts has prompted efforts to characterize the roles of different opioid receptor subtypes in mediating their combined effects. Previous drug discrimination studies in rats have been inconsistent in showing significant interactions between cocaine and opioid agonists in subjects trained to discriminate a relatively high dose of cocaine from vehicle. It is known, however, that the training dose of cocaine can play a key role in drug-substitution and drug-interaction profiles and, therefore, training rats to discriminate a relatively low dose of cocaine may influence its interactions with opioid agonists. Objectives: The objectives of this study were to examine the degree to which a relatively high (10 mg/kg) versus a relatively low (3.0 mg/kg) cocaine training dose influenced the interactions between cocaine and either the µ opioid agonist morphine or the κ opioid agonist U50,488. Methods: Substitution tests with cumulative doses of cocaine, morphine and U50,488 were conducted, as were studies in which selected doses of morphine or U50,488 were administered prior to cumulative doses of cocaine. Results: In substitution tests, cocaine was 2.9 times more potent under the low- than the high-dose training condition. Morphine substituted fully for cocaine in the majority of subjects trained to discriminate the low, but not the high, dose of cocaine. U50,488 engendered mainly saline-lever responses under both training conditions. In pretreatment studies, morphine enhanced and U50,488 attenuated the discriminative stimulus effects of cocaine in low-dose, but not high-dose, trained rats. In low-dose trained rats, cocaine was five- to eightfold more potent after morphine and three- to fourfold less potent after U50,488 pretreatments. Conclusions: The results demonstrate that cocaine–opioid interactions are dependent on the training dose of cocaine in rats and suggest an opposing influence of µ and κ opioid receptors in modifying the discriminative stimulus effects of cocaine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...