Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Fluoxetine ; Paroxetine ; Serotonin ; 5-HT1A autoreceptors ; Dorsal raphe nucleus ; Firing ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Electrophysiological and autoradiographic approaches were used to assess possible changes in 5-hydroxytryptamine (serotonin) 5-HT1A receptors in the rat dorsal raphe nucleus after a subchronic treatment with fluoxetine or paroxetine, two specific serotonin reuptake inhibitors with antidepressant properties. Fluoxetine or paroxetine were injected daily (5 mg/kg, i.p.) for various time periods up to 21 days. Electrophysiological recordings performed 24 h after the last injection showed that the potency of the 5HT1A receptor agonist, 8-OH-DPAT, to depress the firing of serotoninergic neurons in the dorsal raphe nucleus within brain stem slices was significantly reduced as early as after a 3-day treatment with either drug. The proportion of recorded neurons showing desensitization of somatodendritic 5-HT1A autoreceptors increased along the treatment from ∼40% on the 3rd day to 60–80% on the 21st day. At no time during the treatment, was the specific binding of [3H]8-OHDPAT (agonist radioligand) or [3H] WAY-100 635 (antagonist radioligand) to 5-HT1A receptors modified in the dorsal raphe nucleus or in other brain areas, suggesting that neither the density nor the coupling of these receptors to G-proteins were probably altered in rats injected with fluoxetine or paroxetine for up to 21 days. These results show that adaptive desensitization of somatodendritic 5-HT1A autoreceptors within the dorsal raphe nucleus can already be detected after a 3-day treatment with selective serotonin reuptake inhibitors. Rather than the desensitization per se, it may be the progressive increase in the number of serotoninergic neurons with desensitized 5-HT1A autoreceptors which plays a critical role in the (slowly developing) antidepressant action of these drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words Fluoxetine ; Paroxetine ; Serotonin ; 5-HT1A autoreceptors ; Dorsal raphe nucleus ; Firing ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Electrophysiological and autoradiographic approaches were used to assess possible changes in 5-hydroxytryptamine (serotonin) 5-HT1A receptors in the rat dorsal raphe nucleus after a subchronic treatment with fluoxetine or paroxetine, two specific serotonin reuptake inhibitors with antidepressant properties. Fluoxetine or paroxetine were injected daily (5 mg/kg, i.p.) for various time periods up to 21 days. Electrophysiological recordings performed 24 h after the last injection showed that the potency of the 5-HT1A receptor agonist, 8-OH-DPAT, to depress the firing of serotoninergic neurons in the dorsal raphe nucleus within brain stem slices was significantly reduced as early as after a 3-day treatment with either drug. The proportion of recorded neurons showing desensitization of somatodendritic 5-HT1A autoreceptors increased along the treatment from ∼40% on the 3rd day to 60–80% on the 21st day. At no time during the treatment, was the specific binding of [3H]8-OH-DPAT (agonist radioligand) or [3H]WAY-100 635 (antagonist radioligand) to 5-HT1A receptors modified in the dorsal raphe nucleus or in other brain areas, suggesting that neither the density nor the coupling of these receptors to G-proteins were probably altered in rats injected with fluoxetine or paroxetine for up to 21 days. These results show that adaptive desensitization of somatodendritic 5-HT1A autoreceptors within the dorsal raphe nucleus can already be detected after a 3-day treatment with selective serotonin reuptake inhibitors. Rather than the desensitization per se, it may be the progressive increase in the number of serotoninergic neurons with desensitized 5-HT1A autoreceptors which plays a critical role in the (slowly developing) antidepressant action of these drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6903
    Keywords: Serotonin ; 5-HT1A autoreceptors ; corticosterone ; depressive disorders ; transgenic mice ; stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Reciprocal interactions between central 5-HT system and hypothalamo-pituitary-adrenal (HPA) axis are of particular relevance with regard to depression, in which alterations of both systems have been evidenced. In order to further explore these interactions, two models of mutant mice have been used. They consisted of knock-out mice lacking the 5-HT transporter (5-HTT−/−) and of transgenic mice with impaired glucocorticoid receptor (GR-i) expression. Under control conditions, the functional properties of 5-HT1A autoreceptors in GR-i mice were as in their paired wild-type. However, both chronic stress and long term treatment with fluoxetine induced abnormal adaptive changes in 5-HT1A autoreceptor functioning in GR-i mice. On the other hand, a marked desensitization of 5-HT1A autoreceptors was found in 5-HTT−/− mice as compared with paired wild-type animals, and this phenomenon was further enhanced by exposure to stressful conditions. These data show that alterations of HPA axis at the gene level has consequences on 5-HT neurotransmission, and reciprocally, that 5-HTT knock-out affects HPA-dependent responses to stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...