Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-908X
    Keywords: Iodoproxyfan ; H3 receptors ; α 2-Adrenoceptors ; 5-HT3 receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We determined the affinity and/or potency of the novel H3 receptor antagonist iodoproxyfan atα 2 and 5-HT3 receptors. Iodoproxyfan and rauwolscine (a referenceα 2 ligand) (i) monophasically displaced3H-rauwolscine binding to rat brain cortex membranes (pKi 6.79 and 8.59); (ii) facilitated the electrically evoked tritium overflow from superfused mouse brain cortex slices preincubated with3H-noradrenaline (pEC50 6.46 and 7.91) and (iii) produced rightward shifts of the concentration-response curve (CRC) of (unlabelled) noradrenaline for its inhibitory effect on the evoked overflow (pA2 6.65 and 7.88). In the guinea-pig ileum, iodoproxyfan 6.3µmol/l failed to evoke a contraction by itself but depressed the maximum of the CRC of 5-hydroxytryptamine (pD′2 5.24). Tropisetron (a reference 5-HT3 antagonist) produced rightward shifts of the CRC of 5-hydroxytryptamine (pA2 7.84). In conclusion, the affinity/potency of iodoproxyfan at H3 receptors (range 8.3-9.7 [1]) exceeds that atα 2 receptors by at least 1.5 log units and that at 5-HT3 receptors by at least 3 log units.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 358 (1998), S. 623-627 
    ISSN: 1432-1912
    Keywords: Key words [3H]-Nα-methylhistamine binding ; Rat brain cortex membranes ; Mouse brain cortex slices ; Histamine H3 receptors ; Ciproxifan ; Iodoproxyfan ; Noradrenaline release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We determined the affinities of five newly synthesized histamine H3-receptor antagonists in an H3-receptor binding assay and their potencies in a functional H3-receptor model. Furthermore, we determined their potencies in a histamine H2- and H1-receptor model. The compounds differ from histamine in that the ethylamine side chain is replaced by an aryl-substituted propyloxy chain and they differ from one another by varying substituents of the aryl rest. Iodoproxyfan, a highly potent and selective antagonist at H3 receptors, is structurally related to these five compounds. The specific binding of [3H]-N α-methylhistamine to rat brain cortex membranes was monophasically displaced by each of the five compounds at pK i values ranging from 8.24 to 9.27. Inhibition by histamine of the electrically evoked tritium overflow from mouse brain cortex slices preincubated with [3H]noradrenaline was antagonized by all compounds and the concentration-response curve was shifted to the right with apparent pA 2 values ranging from 7.78 to 9.39. The five compounds under study possess negligible potencies at histamine H2 and H1 receptors studied in the guinea-pig right atrium and ileum, respectively (pD’2 or pK p values ≤5.2). The present paper shows that the five compounds under study possess high affinities and potencies at histamine H3 receptors, four out of the five compounds in this respect being equipotent with iodoproxyfan. Like iodoproxyfan, the five compounds show an at least 1000-fold selectivity for H3 as compared to H2 and H1 receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key words Histaprodifen ; Methylhistaprodifen ; Dimethylhistaprodifen ; 2-(2-Thiazolyl)ethanamine ; H1-receptor agonists ; Pithed rats ; Anaesthetized rats ; Dimetindene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Selective H2- and H3-receptor agonists, exhibiting an at least tenfold higher potency than histamine itself at the respective receptors, have been known for several years. Selective H1-receptor agonists with a potency exceeding that of histamine have become available only recently; the most potent are methylhistaprodifen and dimethylhistaprodifen [N α-methyl- and N α,N α-dimethyl-2-(3,3-diphenylpropyl)histamine, respectively] with 3.4- and 2.4-fold higher potencies than histamine in vitro (in the guinea-pig ileum). The aim of the present study was to examine whether these compounds and the parent compound histaprodifen are potent H1-receptor agonists in the pithed and in the anaesthetized rat. In pithed, vagotomized rats diastolic blood pressure was decreased by 2-(2-thiazolyl)ethanamine i.v. (which was used as a reference H1-receptor agonist) and by histaprodifen, methylhistaprodifen, and dimethylhistaprodifen; the maximum decrease was about 45 mmHg for each compound, and the potencies, expressed as pED50, the negative logarithm of the dose (in mole per kilogram body weight) eliciting a half-maximal response, were 7.23, 7.55, 8.43 and 8.12, respectively. The dose/response curves of the four compounds were shifted to the right to about the same extent by the H1-receptor antagonist dimetindene (1 µmol/kg i.v.). The vasodepressor response was not affected by combined i.v. administration of the H2- and H3-receptor antagonists ranitidine and thioperamide, by combined i.v. administration of the α1- and α2-adrenoceptor antagonists prazosin and rauwolscine, and by the β-adrenoceptor antagonist propranolol i.v. but was attenuated by the inhibitor of NO synthase, N ω-nitro-l-arginine methyl ester i.v. In anaesthetized rats 2-(2-thiazolyl)ethanamine, histaprodifen, methylhistaprodifen and dimethylhistaprodifen i.v. also decreased diastolic blood pressure in a manner sensitive to dimetindene i.v. Our data show that histaprodifen and, in particular, methyl- and dimethylhistaprodifen are highly potent H1-receptor agonists in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...