Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0541
    Keywords: Computational geometry ; Ray-shooting ; Triangulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract LetP be a simple polygon withn vertices. We present a simple decomposition scheme that partitions the interior ofP intoO(n) so-called geodesic triangles, so that any line segment interior toP crosses at most 2 logn of these triangles. This decomposition can be used to preprocessP in a very simple manner, so that any ray-shooting query can be answered in timeO(logn). The data structure requiresO(n) storage andO(n logn) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time toO(n). We also extend our general technique to the case of ray shooting amidstk polygonal obstacles with a total ofn edges, so that a query can be answered inO(√ logn) time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Combinatorica 10 (1990), S. 137-173 
    ISSN: 1439-6912
    Keywords: 51-04 ; 52 A 37 ; 68 R 05
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We show that the total combinatorial complexity of all non-convex cells in an arrangement ofn (possibly intersecting) triangles in 3-space isO(n 7/3 logn) and that this bound is almost tight in the worst case. Our bound significantly improves a previous nearly cubic bound of Pach and Sharir. We also present a (nearly) worst-case optimal randomized algorithm for calculating a single cell of the arrangement and an alternative less efficient, but still subcubic algorithm for calculating all non-convex cells, analyze some special cases of the problem where improved bounds (and faster algorithms) can be obtained, and describe applications of our results to translational motion planning for polyhedra in 3-space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...