Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 52.50.Jm  (2)
Material
Years
Keywords
  • 1
    ISSN: 1090-6487
    Keywords: 52.50.Jm ; 52.20.Hv ; 42.65.Jx
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We report the first interferometric observations of the dynamics of electron-ion cavitation of relativistically self-focused intense 4 TW, 400 fs laser pulse in a He gas jet. The electron density in a channel 1 mm long and 30 μm in diameter drops by a factor of approximately 10 from the maximum value of ∼8×1019 cm−3. A high radial velocity of the plasma expansion, ∼3.8×108 cm/s, corresponding to an ion energy of about 300 keV, is observed. The total energy of fast ions is estimated to be 6% of the laser pulse energy. The high-velocity radial plasma expulsion is explained by a charge separation due to the strong ponderomotive force. This experiment demonstrates a new possibility for direct transmission of a significant portion of the energy of a laser pulse to ions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1090-6487
    Keywords: 52.50.Jm ; 42.60.Jf ; 42.55.Ah
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new method of cylindrical cumulation of fast ions undergoing ponderomotive acceleration at the focus of a high-power subpicosecond laser is proposed. When a laser beam is focused in a preionized gas at a ring focus, radial acceleration of ions by the ponderomotive force occurs. The ions accelerated from the inner side of the ring form a cylindrical shock wave converging toward the axis. As the shock wave cumulates, the ion density increases rapidly and the ion-ion collision probability increases along with it. A numerical simulation for a ~100 TW subpicosecond laser pulse predicts the generation of up to 200 keV ions and up to 100-fold volume compression of the plasma in a cylinder ~1 µm in diameter. The lifetime of the dense plasma filament over the length of the laser caustic is several picoseconds. It is suggested that laser cumulation of ions be used for the production of a bright and compact subpicosecond source of fast neutrons, media for x-and γ-ray lasers, and multiply-charged ions and for the initiation of nuclear reactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...