Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Optical and quantum electronics 32 (2000), S. 299-311 
    ISSN: 1572-817X
    Keywords: frequency stabilization ; frequency measurement ; 543 nm HeNe laser ; iodine stabilization ; lamb-dip stabilization ; two-mode stabilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract In this paper we report our investigations on the frequency stabilization and frequency measurements of 543 nm HeNe laser. It contains following four different works. (1) Using a metal laser tube we have built an iodine-stabilized 543 nm HeNe laser by the Frequency-Modulation (FM) spectroscopy. The signal-to-noise ratio of the hyperfine spectrum reached 2 × 10−12 at 1 s sampling time. (2) We have built a compact iodine-stabilized 543 nm HeNe laser system using the third-harmonic locking technique. Stability better than 1 × 10−12 for sampling time 〉1 s is obtained. We also suggest the b10 line for the future recommendation. (3) We constructed the Lamb-dip stabilized He-20Ne and He-22Ne lasers and measured their frequency stability, reproducibility, and absolute frequencies. The results suggest that the Lamb-dip stabilized lasers are appropriate for secondary wavelength standards. We have also deduced the isotope shift of Ne atom at 543 nm. (4) We have developed two two-mode stabilized 543 nm HeNe lasers using the bang-bang control method. The Allan variance is 1 × 10−11 at 1 s sampling time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...