Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 49 (1989), S. 671-675 
    ISSN: 1432-0630
    Keywords: 64.75 ; 66.30J
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A new model for phosphorus segregation at the Si-SiO2 interface is derived and verified by experimental data. The model considers for the first time, a third phase, the interface layer itself, in addition to the Si and SiO2 phases, and the dynamics of the three-phase system is described in terms of rate equations. In particular, the phosphorus compound formation in the interface layer (phosphorus pile-up), which renders the dopant electrically inactive to a large extent, is described as a competition of the dopant in silicon and in silicon dioxide in filling and depleting a constant density of interface traps. Our model allows an unambiguous correlation of the dopant concentration on both sides of the interface with the integral dose of the interface phosphorus pile-up. Experimental data for different phosphorus concentrations, different temperatures, and different oxidation ambients, including inert anneals, are fitted by a single curve.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...