Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 71.55 ; 78.55
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Acceptor levels related to I, II, IV, and V group impurities in indium selenide are studied by means of the Hall effect, deep-level-transient spectroscopy (DLTS) and photoluminescence. Activation energies for hole concentrations in the range from 200 to 300 meV have been measured. A reversible change of sign of the Hall voltage has been observed below 215 K. This behaviour can be explained through a model in which acceptor levels are assumed to be shallow and interlayer planar precipitates of ionized shallow donors create potential wells that behave as deep donors and in which a low concentration of bidimensional free electrons can exist. This model also explains the capacitance-voltage characteristics of both ITO/p-InSe and Au/p-InSe barriers. DLTS results are coherent with this model: hole traps in high concentration located about 570 meV above the valence band are detected. Photoluminescence also confirms the shallow character of acceptor levels. A broad band whose intensity is related to p conductivity appears in the PL spectra of low resistivity p-InSe. The shape and temperature dependence of this band can be explained through self-activated photoluminescence in a complex center in which the ground acceptor level must be at about 50 meV above the valence band.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...