Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: A-DNA ; B-DNA ; conformational variability ; ensemble averaging ; Monte Carlo simulations ; nucleic acids ; relaxation rates ; structure refinement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A new algorithm is presented for determination of structural conformers and their populations based on NMR data. Restrained Metropolis Monte Carlo simulations or restrained energy minimizations are performed for several copies of a molecule simultaneously. The calculations are restrained with dipolar relaxation rates derived from measured NOE intensities via complete relaxation matrix analysis. The novel feature of the algorithm is that the weights of individual conformers are determined in every refinement step, by the quadratic programming algorithm, in such a way that the restraint energy is minimized. Its design ensures that the calculated populations of the individual conformers are based only on experimental restraints. Presence of internally inconsistent restraints is the driving force for determination of distinct multiple conformers. The method is applied to various simulated test systems. Conformational calculations on nucleic acids are carried out using generalized helical parameters with the program DNAminiCarlo. From different mixtures of A- and B-DNA, minor fractions as low as 10% could be determined with restrained energy minimization. For B-DNA with three local conformers (C2′-endo, O4′-exo, C3′-endo), the minor O4′-exo conformer could not be reliably determined using NOE data typically measured for DNA. The other two conformers, C2′-endo and C3′-endo, could be reproduced by Metropolis Monte Carlo simulated annealing. The behavior of the algorithm in various situations is analyzed, and a number of refinement protocols are discussed. Prior to application of this algorithm to each experimental system, it is suggested that the presence of internal inconsistencies in experimental data be ascertained. In addition, because the performance of the algorithm depends on the type of conformers involved and experimental data available, it is advisable to carry out test calculations with simulated data modeling each experimental system studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: dynamic nmr refinement ; MD with time-averaged restraints ; PDQPRO ; quadratic programming algorithm ; TΨC-loop, tRNA ; tRNA (m5U54)-methyltransferase ; RNA/protein recognition ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Solution structures are typically average structures determined with the help of nmr-derived distance and torsion angle information. However, when a biomolecule populates significantly different conformations, the average structure might be prone to artifacts, and other refinement strategies are necessary. For example, when experimental restraints are used in molecular dynamics simulations in a time-averaged fashion (MDtar), the experimental structural information does no longer need to be satisfied at each step of the simulation; instead, the whole trajectory must agree with the restraints. However, the resulting structural ensembles are large and not unique and it is not trivial to extract the essential dynamic features for a system. Here we demonstrate that large MDtar ensembles can be simplified substantially by reducing the number of members to just a few on the basis of adjusting the individual probabilities of the members with the PDQPRO program [N. B. Ulyanov et al. Biophysical Journal (1995), Vol. 68, p. 13]. This algorithm finds the global minimum for a search function that represents the best match of a given ensemble with the experimental dipolar interproton relaxation rates. We have applied this strategy to a 17-residue RNA hairpin, whose loop exhibited considerable flexibility evident from nmr data. This 17mer is a mimic of the TΨC-loop of tRNA, where nucleotide 54 is usually a ribosylthymidine. The methylation of U54, which is completely buried in transfer ribonucleic acid, is administered by tRNA (m5U54)-methyltransferase (RUMT). Since the 17mer is a good substrate for RUMT, we previously concluded that the flexibility of the 17mer's loop is a key to how RUMT gains access to the methylation site [L. J. Yao et al. Journal of Biomolecular NMR (1996) Vol. 9, p. 229]. Application of the PDQPRO algorithm to the previously acquired MDtar trajectories allowed us to reduce the number of conformations from several hundred to one major and five or six minor conformations with individual populations from ∼ 5% to ∼ 50% without any deterioration in the match with the experimental data. The major conformation exhibits a continuation of A-form helicity through part of the loop, involving C60 and U59. In this and most other conformations the methylation site in U54 is no longer buried. © 1998 John Wiley & Sons, Inc. Biopoly 46: 329-342, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...