Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Key words TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  8-(N, N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 colonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n=4) and NT (10 nmol/l, n=4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/l for ATP (n=4) or 1 nmol/l for NT (n=4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40±5 nmol/l, n=7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (ΔpH: 0.1±0.02, n=7) occurring simultaneously with the increase in [Ca2+]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 8-(N, N-diethyl amino) octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 coIonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n = 4) and NT (10 nmol/l, n = 4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/I for ATP (n = 4) or 1 nmol/l for NT (n = 4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40 ± 5 nmol/l, n = 7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (Δ pH: 0.1 ± 0.02, n = 7) occurring simultaneously with the increase in [Ca +]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Nystatin perforated patchclamp technique ; Fura-2 ; HT29 ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Indirect evidence has accumulated indicating a voltage dependence of the agonist-stimulated Ca2+ influx into epithelial cells. Manoeuvres expected to depolarise the membrane voltage during agonist stimulation resulted in: (1) a decrease of the sustained phase of the adenosine triphosphate (ATP, 10−5 mol/l)-induced intracellular Ca2+ transient, (2) a reduced fura-2 Mn2+-quenching rate, and (3) prevention of the refilling of the agonist-sensitive store. To quantify the change in intracellular Ca2+ as a function of membrane voltage, we measured simultaneously the intracellular Ca2+ activity ([Ca2+]i) with fura-2 and the electrical properties using the nystatin perforated patch-clamp technique in single HT29 cells. Ca2+ influx was either stimulated by ATP (10−5 mol/l) or thapsigargin (TG, 10−8 mol/l). After [Ca2+]i reached the sustained plateau phase we clamped the membrane voltage in steps of 10 mV in either direction. A stepwise depolarisation resulted in a stepwise reduction of [Ca2+]i. Similarly a stepwise hyperpolarisation resulted in a stepwise increase of [Ca2+]i (ATP: 27.5±10 nmol/l per 10 mV, n=6; TG: 19 ±7.9 nmol/l per 10 mV, n=12). The summarised data show a linear relationship between the Δ fluorescence ratio 340/380 nm change and the applied holding voltage. In unstimulated cells the same voltage-clamp protocol did not change [Ca2+]i (n=9). Under extracellular Ca2+-free conditions [Ca2+]i remained unaltered when changing the membrane voltage. These data provide direct evidence that the Ca2+ influx in epithelial cells is membrane voltage dependent. Our data indicate that small changes in membrane voltage lead to substantial changes in [Ca2+]i. This may be due either to a change of driving force for Ca2+ into the cell, or may reflect voltage-dependent regulation of the respective Ca2+ entry mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words BCECF ; Fura-2 ; pHi ; [Ca2+]i ; HT29 ; Carbachol ; Neurotensin ; ATP ; InsP3 ; Cell volume ; Calcein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study we examined the influence of intracellular pH (pHi) on agonist-induced changes of intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. pHi and [Ca2+]i were measured microspectrofluorimetrically using BCECF and fura-2, respectively. Buffers containing trimethylamine (TriMA), NH3/NH4 + and acetate were used to clamp pHi to defined values. The magnitudes of the peak and plateau of [Ca2+]i transients induced by carbachol (CCH, 10–6 mol/l) were greatly enhanced by an acidic pHi and nearly abolished by an alkaline pHi. The relationship between pHi and the [Ca2+]i peak was nearly linear from pHi 7.0 to 7.8. This effect of pHi was also observed at higher CCH concentrations (10–4 and 10–5 mol/l), at which the inhibitory effect of an alkaline pHi was more pronounced than the stimulatory effect of an acidic pHi. An acidic pHi shifted the CCH concentration/response curve to the left, whereas an alkaline pHi led to a rightward shift. The influence of pHi on [Ca2+]i transients induced by neurotensin (10–8 mol/l) or ATP (5 × 10–7 mol/l) was similar to its influence on those induced by CCH, but generally not as pronounced. Measurements of cellular inositol 1,4,5-trisphosphate (InsP 3) showed no changes in response to acidification with acetate (20 mmol/l) or alkalinization with TriMA (20 mmol/l). The InsP 3 increase induced by CCH was unaltered at an acidic pHi, but was augmented at an alkaline pHi. Confocal measurements of cell volume showed no significant changes induced by TriMA or acetate. Slow-whole-cell patch-clamp experiments showed no additional effect of CCH on the membrane voltage (V m) measured after TriMA or acetate application. We conclude that pHi is a physiological modulator of hormonal effects in HT29 cells, as the [Ca2+]i responses to agonists were significantly changed at already slightly altered pHi. The measurements of InsP 3, cell volume and V m show that pHi must act distally to the InsP 3 production, and not via changes of cell volume or V m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: ATP ; pH ; Voltage dependence ; Volume regulation ; Intracellular Ca2+ ; Patch clamp ; Fura-2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the luminal membrane of rat cortical collecting duct (CCD) a big Ca2+-dependent and a small Ca2+-independent K+ channel have been described. Whereas the latter most likely is responsible for the K+ secretion in this nephron segment, the function of the large-conductance K+ channel is unknown. The regulation of this channel and its possible physiological role were examined with the conventional cell-free and the cell-attached nystatin patch-clamp techniques. Patch-clamp recordings were obtained from the luminal membrane of isolated perfused CCD segments and from freshly isolated CCD cells. Intracellular calcium was measured using the calcium-sensitive dye fura-2. The large-conductance K+ channel was strongly voltage- and calcium-dependent. At 3 μmol/l cytosolic Ca2+ activity it was half-maximally activated. At 1 mmol/l it was neither regulated by cytosolic pH nor by ATP. At 1 μmol/l Ca2+ activity the open probability (P o) of this channel was pH-dependent. At pH 7.0 P o was decreased to 4±2% (n=9) and at pH 8.5 it was increased to 425±52% (n=9) of the control. At this low Ca2+ activity the P o of the channel was reduced by 1 mmol/l ATP to 8±4% (n=6). Cell swelling activated the large-conductance K+ channel (n=14) and hyperpolarized the membrane potential of the cells by 9±1 mV (n=23). Intracellular Ca2+ activity increased after hypotonic stress. This increase depended on the extracellular Ca2+ activity. A possible physiological function of the large-conductance K+ channel in rat CCD cells may be the reduction of the intracellular K+ concentration after cell swelling. Once this channel is activated by increases in the cytosolic Ca2+ activity it can be regulated by changes in cellular pH and ATP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: [Ca2+]i export ; Thapsigargin ; fura-2 ; HT29 ; CFPAC-1 ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is increasing evidence that some agonists not only induce intracellular Ca2+ increases, due to store release and transmembranous influx, but also that they stimulate Ca2+ efflux. We have investigated the agonist-stimulated response on the intracellular Ca2+ activity ([Ca2+]i) in the presence of thapsigargin (10−8 mol/l, TG) in HT29 and CFPAC-1 cells. For CFPAC-1 the agonists ATP (10−7–10−3 mol/l, n=9), carbachol (10−6–10−3 mol/l, n=5) and neurotensin (10−10–10−7 mol/l, n=6) all induced a concentration-dependent decrease in [Ca2+]i in the presence of TG. Similar results were obtained with HT29 cells. This decrease of [Ca2+]i could be caused by a reduced Ca2+ influx, either due to a reduced driving force for Ca2+ in the presence of depolarizing agonists or due to agonist-regulated decrease in Ca2+ permeability. Using the fura-2 Mn2+ quenching technique we demonstrated that ATP did not slow the TG-induced Mn2+ quench. This indicates that the agonist-induced [Ca2+]i decrease in the presence of TG was not due to a reduced influx of Ca2+ into the cell, but rather due to stimulation of Ca2+ export. We used the cell attached nystatin patch clamp technique in CFPAC-1 cells to examine whether, in the presence of TG, the above agonists still led to the previously described electrical changes. The cells had a mean membrane voltage of −49±3.6 mV (n=9). Within the first 3 min ATP was still able to induce a depolarization which could be attributed to an increase in Cl− conductance. This was expected, since at this time after TG stimulation all Ca2+ agonists still liberated some [Ca2+]i. When TG incubation was prolonged, agonist application led to strongly attenuated or to no electrical responses. Therefore, the agonist-stimulated [Ca2+]i decrease cannot be explained by the reduction of the driving force for Ca2+ into the cell. In the same cells hypotonic swelling (160 mosmol/l, n=15) still induced a further [Ca2+]i increase in the presence of TG and concomitantly induced Cl− and K+ conductances. We conclude that the agonist-induced decrease of [Ca2+]i in the presence of TG probably unmasks a stimulation of [Ca2+]i export.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 428 (1994), S. 583-589 
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Fura-2 ; CFPAC-1 ; Flufenamate ; Gd3+ ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The relevant influx pathway for stimulated Ca2+ entry into epithelial cells is largely unknown. Using flufenamate (Flu) and Gd3+, both known pharmacological blockers of non-selective cation currents in other epithelial preparations, we tested whether the stimulated Ca2+ entry in CFPAC-1 cells was inhibited by these agents. Transmembraneous Ca2+ influx into CFPAC-1 cells was stimulated by either ATP (10−4 and 10−5 mol/l), carbachol (CCH, 10−4 mol/l) or thapsigargin (TG, 10−8 mol/l). Three different experimental approaches were used. (1) Because the plateau phase of an agonist-induced [Ca2+]i transient reflects Ca2+ influx into these cells, we investigated the influence of Flu and Gd3+ on the level of the stimulated [Ca2+]i plateau. (2) The fura-2 Mn2+-quenching technique was used to visualise divalent cation entry and monitor its inhibition. (3) During the “refilling period” after agonist-induced discharge of the intracellular pools the putative influx inhibitors Flu and Gd3+ were given and subsequently the filling state of the agonist-sensitive intracellular stores tested. The results from the first experimental approach showed that both Flu and Gd3+ were potent inhibitors of the stimulated Ca2+ entry in CFPAC-1 cells. Flu reversibly decreased the ATP-induced [Ca2+]i plateau in a concentration dependent manner, with an IC50 value of 33 μmol/l (n = 6). Similar results were obtained for the CCH-(n = 5) and the TG-induced (n = 5) [Ca2+]i plateau. Gd3+ concentration dependently inhibited the stimulated Ca2+ plateau. A complete block of the ATP-induced [Ca2+]i plateau was seen at 0.5 μmol/l (ATP 10−5 mol/l, n = 8). The second approach showed that Flu (10−4 mol/l) completely inhibited the ATP- (10−5 mol/l, n = 3), CCH-(10−4 mol/l, n = 4) and TG-(10−8 mol/l, n = 3)-induced fura-2 Mn2+ quench. Gd3+ also inhibited the fura-2 Mn2+-quenching rate (n = 9). The third approach showed that Flu (n = 6) and Gd3+ (n = 8) inhibited the refilling of the ATP-sensitive intracellular Ca2+ store. These results show that inhibitors of non-selective cation currents in other epithelial preparations are potent inhibitors of stimulated Ca2+ influx in CFPAC-1 cells. Whether this inhibitory effect concerns a non-selective cation channel remains to be established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 403-405 
    ISSN: 1432-2013
    Keywords: HT29 ; CFPAC-1 ; Cl− Secretion ; cAMP ; ATP ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous studies in HT29 cells have revealed that the Cl− channels induced by cAMP or by increasing cytosolic Ca2+, e.g. by addition of ATP, and by hypotonic cell swelling share in common all examined properties, such as ion selectivity and blocker sensitivity. In addition, it was shown that conductances induced by either pathway were not additive. Therefore all three pathways apparently act on the same type of small conductance Cl− channel. In CFPAC-1 cells the general properties of the Cl− conductance were identical. However, the cAMP response was absent. In both cell types the Ca2+-mediated conductance response was transient. Here we examine the kinetics of the conductance increases induced by neurotensin (NT, 10−8 mol/l) or ATP (10−5 mol/l) in HT29 and CFPAC-1 cells using the slow (nystatin) or fast whole cell patch clamp technique, and we ask whether cAMP influences these kinetics. In the continuous presence of NT the conductance response in both cell types was very transient. It collapsed with a time constant (τ) of 39 (30–56 s) in HT29 and of 33 (27–41 s) in CFPAC-1 cells. The ATP response was also transient with a τ of 49 (42–57 s) in HT29 cells and 102 (77–152 s) in CFPAC-1 cells. Pre-treatment by membrane permeable cAMP (10−3 mol/l) enhanced the baseline conductance in HT29 but not in CFPAC-1 cells. Furthermore, the ATP- and NT-induced conductance increases became significantly less transient in HT29 but not in CFPAC-1 cells. In the former cells τ was enhanced significantly to 207 (154–316 s) after ATP and to 1.533 (1004-∞ s) after NT. In CFPAC-1 cells the transient nature of the conductance response persisted. These data indicate that cAMP and Ca2+ co-operate in HT29- but not in CFPAC-1-cells. In the former cells the transient conductance response is converted into a more stable response by cAMP. In CFPAC-1 cells the cAMP-mechanism is not functioning. Therefore, all Ca2+-mediated conductance responses are only very transient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words Colon ; Fura-2 ; Rat colonic crypt ; ATP ; P2Y-receptor ; Purinoceptor ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Under resting conditions the mammalian distal colon is a NaCl-absorptive epithelium. NaCl absorption occurs at surface cells in colonic crypts. Intracellular Ca2+ or cAMP are important second messengers that activate NaCl secretion, a function that is most pronounced in crypt bases. In the present study we examined the effect of extracellular ATP on isolated crypts of rat distal colon using the fura-2 technique. Intracellular Ca2+ ([Ca2+]i) was measured spectrofluorimetrically either by photon counting or video imaging. ATP reversibly increased [Ca2+]i in crypt base cells with an EC50 of 4.5 μmol/l (n = 11). This [Ca2+]i increase was composed of an initial peak, reflecting intracellular store release, and a secondary plateau phase reflecting transmembrane influx. Digital video imaging revealed that agonist-induced [Ca2+]i elevations were most marked at the crypt base. In the middle part of the crypt ATP induced smaller increases of [Ca2+]i (peak and plateau) as compared to basal cells and in surface cells this [Ca2+]i transient was even further reduced. Attempts to identify the relevant P2-receptor demonstrated the following rank order of potency: 2MeS-ATP 〉 ADP ≥ ATP 〉〉 AMP 〉 UTP 〉 AMP-PCP 〉 adenosine. In Ussing chamber experiments ATP (1 mmol/l) functioned as a secretagogue, increasing transepithelial voltage (V te) and equivalent short-circuit current (I sc): ΔI sc = –36.4 ± 5.4 μA/cm2, n = 17. Adenosine itself (1 mmol/l) induced an increase of I sc of similar magnitude to that induced by ATP: ΔI sc = –55.1 ± 8.4 μA/cm2, n = 9. The effect of adenosine, but not that of ATP, was fully inhibited by the A1/A2-receptor antagonist 8-(p-sulphophenyl)theophylline, 0.5 mmol/l, n = 4. Together these data indicate that: (1) basolateral ATP induces [Ca2+]i in isolated rat colonic crypts and acts as a secretagogue in the distal rat colon; (2) a basolateral P2Y-receptor is responsible for this ATP-induced NaCl secretion; (3) the ability of ATP to increase I sc in Ussing chamber experiments is not mediated via adenosine; and (4) the agonist-induced [Ca2+]i signals are mostly located in the crypt base, which is the secretory part of the colonic crypt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...