Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Cell Biochemistry and Function 11 (1993), S. 45-54 
    ISSN: 0263-6484
    Keywords: Acetaldehyde ; ethanol ; cyanamide ; 4-methylpyrazole ; protein synthesis ; heart ; protein turnover ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have determined the extent to which acute ethanol administration perturbs the synthesis of ventricular contractile and non-contractile proteins in vivo. Male Wistar rats were treated with a standard dose of ethanol (75 mmol kg-1 body weight; i.p.). Controls were treated with isovolumetric amounts of saline (0·15 mol 1-1 NaCl). Two metabolic inhibitors of ethanol metabolism were also used namely 4-methylpyrazole (alcohol dehydrogenase inhibitor) and cyanamide (acetaldehyde dehydrogenase inhibitor) which in ethanol-dosed rats have been shown to either decrease or increase acetaldehyde formation, respectively. After 2·5 h, fractional rates of protein synthesis (i.e. the percentage of tissue protein renewed each day) were measured with a large (i.e. ‘flooding’) dose of L-[4-3H]phenylalanine (150 μmol (100 g)-1 body weight into a lateral vein). This dose of phenylalanine effectively floods all endogenous free amino acid pools so that the specific radioactivity of the free amino acid at the site of protein synthesis (i.e. the amino acyl tRNA) is reflected by the specific radioactivity of the free amino acid in acid-soluble portions of cardiac homogenates. The results showed that ethanol alone and ethanol plus 4-methylpyrazole decreased the fractional rates of mixed, myofibrillar (contractile) and sarcoplasmic (non-contractile) protein synthesis to the same extent (by approx. 25 per cent). Profound inhibition (i.e. 80 per cent) in the fractional rates of mixed, myofibrillar and sarcoplasmic protein synthesis occurred when cyanamide was used to increase acetaldehyde formation. There was also a significant decrease in cardiac DNA content. The results suggest that acute ethanol-induced cardiac injury in the rat may be mediated by both acetaldehyde and ethanol.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...