Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Methanobacterium thermoautotrophicum ; Na+ dependent methanogenesis ; Na+/H+ antiporter ; Monensin ; Gramicidin ; Uncoupler
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methane formation from H2 and CO2 in methanogenic bacteria is a Na+-dependent process. In this communication the effects of Na+ ionophores, of uncouplers, and of Na+/H+ antiporter inhibitors on methane formation from H2 and CO2 were studied with Methanobacterium thermoautotrophicum. 1. Na+ ionophores (the Na+/H+ antiporters monensin and lasalocid and the Na+ uniporter gramicidin) stimulated methanogenesis at lwo external Na+ concentrations when the K+ concentration was high. The ionophores had no effect at high external Na+ concentrations and were inhibitory at low external K+ concentrations. 2. Uncouplers (protonophores and valinomycin plus K+) inhibited methanogenesis at low external Na+ concentration at both low and high external K+ concentrations. Inhibition by uncouplers was relieved by the addition of either Na+ or Na+ ionophores. 3. Na+/H+ antiporter inhibitors (harmaline, amiloride, and NH 4 + ) inhibited methanogenesis at low external Na+ concentration. Inhibition was relieved by the addition of either Na+ or of the Na+ ionophores. The results are discussed with respect to the role of Na transport across the cytoplasmic membrane in methanogenesis from H2 and CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 11 (1995), S. 26-57 
    ISSN: 1573-0972
    Keywords: Acetate formation ; acetyl-CoA oxidation ; Archaea ; Bacteria ; chemolithoautotroph ; chemoorganoheterotroph ; glycolytic pathway ; hyperthermophiles ; metabolic pathways ; peptide metabolism ; sugar metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 sup2- , CO2 and NO inf3 sup- but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The ‘classical’ Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is catalysed by acetyl-CoA synthetase (ADP-forming), a novel prokarvotic enzyme involved in energy conservation. In Bacteria, including the hyperthermophile Thermotoga, acetyl-CoA conversion to acetate involves two enzymes, phosphate acetyltransferase and acetate kinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...