Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 117 (1978), S. 277-285 
    ISSN: 1432-072X
    Keywords: White-rot fungi ; Nutrient nitrogen metabolism ; Fungus physiology ; Mycelial pellets ; pH ; Growth substrate ; Wood decay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Culture parameters influencing metabolism of synthetic14C-lignins to14CO2 in defined media have been studied in shallow batch cultures of the ligninolytic wood-destroying HymenomycetePhanerochaete chrysosporium Burds. Study of the effect of O2 concentration in the gas phase above non-agitated cultures indicated essentially complete absence of attack on the lignin polymer at 5% O2 in N2, and a 2- to 3-fold enhancement by 100% O2 as compared to air (21% O2). Agitation of the cultures resulting in the formation of mycelial pellets greatly suppressed lignin decomposition. The optimum culture pH for lignin decomposition was 4 to 4.5, with marked suppression above 5.5 and below 3.5. The source of nutrient nitrogen (NO 3 − , NH 4 + , amino acids) had little influence on lignin decomposition, but the concentration of nitrogen was critical; decomposition at 24 mM was only 25–35% of that at 2.4 mM N. Thiamine was the only vitamin required for growth and lignin decomposition. Under the optimum conditions developed, decomposition of 5 mg of synthetic lignin was accompanied by utilization of approximately 100 mg of glucose. The influence of the various culture parameters was analogous for metabolism of synthetic lignin labeled in the ring-,side chain-, and methoxyl carbon atoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: White-rot fungi ; Secondary metabolism ; Wood decay ; Mycelial pellets ; Fungus physiology ; l-Glutamic acid repression ; Phenylalanine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The lignin-degrading basidiomycete Phanerochaete chrysosporium synthesizes veratryl alcohol (3,4-dimethoxybenzyl alcohol) via phenylalanine, 3,4-dimethoxycinnamyl alcohol and veratrylglycerol. Study of the conversion of 3,4-dimethoxycinnamyl alcohol to veratrylglycerol and veratryl alcohol showed is to be (a) catalyzed by a secondary metabolic system, (b) markedly suppressed by culture agitation, and (c) strongly inhibited by l-glutamate. The amount of veratryl alcohol synthesized de novo was positively correlated with the O2 concentration after primary growth. Other work has shown that the cinnamyl alcohol terminal residue in a lignin substructure model compound is degraded via arylglycerol and benzyl alcohol structures in ligninolytic cultures of P. chrysosporium, and that the ligninolytic system exhibits traits (a)-(c) above. Ligninolytic activity is also strongly and positively correlated with O2 concentration. The results here suggest, therefore, that the actual biosynthetic secondary metabolic product is 3,4-dimethoxycinnamyl alcohol, but that this is degraded by the ligninolytic system to veratryl alcohol via veratrylglycerol. Veratryl alcohol is only slowly metabolized by the fungus, and accumulates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Lignin biodegradation ; White-rot ; Wood decay ; Fungus physiology ; Veratryl alcohol ; Acetovanillone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ligninolytic activity in the white-rot fungus Phanerochaete chrysosporium was previously found not to be induced by lignin, but to develop in cultures in response to nitrogen starvation. Added NH 4 + suppressed existing activity. The present study examined amino acid profiles and protein concentrations during onset of ligninolytic activity (synthetic 14C-lignin→14CO2) in nitrogen-limited cultures, and defined some characteristics of subsequent suppression by added nutrient nitrogen. During the transition between depletion of medium nitrogen and the onset of ligninolytic activity, total free intracellular amino acids increased, then rapidly decreased; changes in glutamate concentration played a major role. Intracellular protein concentration fluctuated in a manner roughly converse to that of the concentration of free amino acids. Protein turnover was rapid (5–7%/h) during the transition period. Glutamate, glutamine, and histidine were the most effective of 14 nitrogenous compounds in suppressing ligninolytic activity after its onset. The suppressive effect was not mediated through carbon (glucose)-catabolite repression or by alterations in culture pH. Activities responsible for oxidation of lignin and the ligninrelated phenol, 4-hydroxy-3-methoxyacetophenone, responded similarly to added nitrogen. Synthesis of a secondary metabolite, veratryl alcohol, like lignin oxidation, was suppressed quite sharply by glutamate and significantly by NH 4 + . Results indicate that nitrogen metabolism affects ligninolytic activity as a part of secondary metabolism, and suggest a role for glutamate metabolism in regulating this phase of culture development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...