Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 10 (1988), S. 153-185 
    ISSN: 0741-0581
    Keywords: Acetylcholine receptor ; Active zones ; Endocytosis ; Exocytosis ; Freeze-fracture ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Because vertebrate neuromuscular junctions are readily accessible for experimental manipulation, they have provided a superb model in which to examine and test functional correlates of chemical synaptic transmission. In the neuromuscular synapse, acetylcholine receptors have been localized to the crests of the junctional folds and visualized by a variety of ultrastructural techniques. By using ultrarapid freezing techniques with a temporal resolution of less than 1 msec, quantal transmitter release has been correlated with synaptic vesicle exocytosis at discrete sites called “active zones.” Mechanisms for synaptic vesicle membrane retrieval and recycling have been identified by using immunological approaches and correlated with endocytosis via coated pits and coated vesicles. In this review, available ultrastructural, physiological, immunological, and biochemical data have been used to construct an ultrastructural model of neuromuscular synaptic transmission that correlates structure and function at the molecular level.
    Additional Material: 30 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...