Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 52 (1979), S. 571-578 
    ISSN: 1573-5036
    Keywords: Acetylene reduction ; Actinomycetous symbiosis ; Alnus glutinosa ; Hydrogenase Hydrogen evolution ; Hydrogen uptake ; Nitrogen fixation ; Respiration ; Root nodules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In the growing season no net H2 evolution is detected when root nodules ofAlnus glutinosa are incubated in air or in argon containing 20% O2. Due to the hydrogenase activity, N2-fixing root nodules consume added H2 at a rate of about 1.4 μmoles H2.g fresh nodule−1.h−1. The uptake of H2 is only found in summer. At the end of the season, in autumn, nodules evolve significant quantities of H2 although the nodules still continue to fix nitrogen. In-vitro studies with fractionated homogenates of summer-harvested nodules show that the recovery of the hydrogenase is high when using methylene-blue or phenazine metasulfate as electron acceptors. No hydrogenase activity is detected in homogenates of autumn-harvested nodules. The hydrogenase is localised in the microsymbiont.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Alnus glutinosa ; Actinorhiza ; Nodule ; Sucrose synthase ; Enolase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two different types of nitrogen-fixing root nodules are known — actinorhizal nodules induced byFrankia and legume nodules induced by rhizobia. While legume nodules show a stem-like structure with peripheral vascular bundles, actinorhizal nodule lobes resemble modified lateral roots with a central vascular bundle. To compare carbon metabolism in legume and actinorhizal nodules, sucrose synthase and enolase cDNA clones were isolated from a cDNA library, obtained from actinorhizal nodules ofAlnus glutinosa. The expression of the corresponding genes was markedly enhanced in nodules compared to roots. In situ hybridization showed that, in nodules, both sucrose synthase and enolase were expressed at high levels in the infected cortical cells as well as in the pericycle of the central vascular bundle of a nodule lobe. Legume sucrose synthase expression was studied in indeterminate nodules from pea and determinate nodules fromPhaseolus vulgaris by usingin situ hybridization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...