Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atomic, Molecular and Optical Physics  (2)
  • Acid phosphatase  (1)
  • Clusia  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Crassulacean acid metabolism ; Clusia ; Phosphoenolpyruvate carboxylase ; Phosphoenolpyruv-ate carboxykinase ; Ribulose 1 ; 5-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The biochemical basis for photosynthetic plasticity in tropical trees of the genus Clusia was investigated in three species that were from contrasting habitats and showed marked differences in their capacity for crassulacean acid metabolism (CAM). Physiological, anatomical and biochemical measurements were used to relate changes in the activities/amounts of key enzymes of C3 and C4 carboxylation to physiological performance under severe drought stress. On the basis of gas-exchange measurements and day/night patterns of organic acid turnover, the species were categorised as weak CAM-inducible (C.aripoensis Britt.), C3-CAM intermediate (C. minor L.) and constitutive CAM (C.␣rosea Jacq. 9.). The categories reflect genotypic differences in physiological response to drought stress in terms of net carbon gain; in C. aripoensis net carbon gain was reduced by over 80% in drought-stressed plants whilst carbon gain was relatively unaffected after 10 d without water in C. rosea. In turn, genotypic differences in the capacity for CAM appeared to be directly related to the capacities/amounts of phosphoenolpyruvate carboxylase (PEPCase) and phosphoenolpyruvate carboxykinase (PEPCK) which increased in response to drought in both young and mature leaves. Whilst measured activities of PEPCase and PEPCK in well-watered plants of the C3-CAM intermediate C. minor were 5–10 times in excess of that required to support the magnitude of organic acid turnover induced by drought, close correlations were observed between malate accumulation/PEPCase capacity and citrate decarboxylation/PEPCK capacity in all the species. Drought stress did not affect the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein in any of the species but Rubisco activity was reduced by 35% in the weak CAM-inducible C. aripoensis. Similar amounts of glycine decarboxylase (GDC) protein were present in all three species regardless of the magnitude of CAM expression. Thus, the constitutive CAM species C. rosea did not appear to show reduced activity of this key enzyme of the photorespiratory pathway, which, in turn, may be related to the low internal conductance to CO2 in this succulent species. Immuno-histochemical techniques showed that PEPCase, PEPCK and Rubisco were present in cells of the palisade and spongy parenchyma in leaves of species performing CAM. However, in leaves from well-watered plants of C. aripoensis which only performed C3 photosynthesis, PEPCK was localized around latex-producing ducts. Differences in leaf anatomy between the species suggest that the association between mesophyll succulence and the capacity for CAM in these hemi-epiphytic stranglers has been selected for in arid environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Spinal cord ; Rolando substance ; Acid phosphatase ; Degeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fluoride resistant acid phosphatase (FRAP) activity of the rat substantia gelatinosa Rolandi is confined to electron dense sinusoid terminals under normal conditions. Transection of dorsal roots or removal of dorsal root ganglia results in a rapid degeneration of more than half of the electron dense sinusoid axon terminals. First signs of degeneration ensue 20 hours after surgery; at the 24 hours state osmiophilic degeneration bodies develop that are translocated into glial elements in the course of the second postoperative day. At the same time, light microscopically visible FRAP-activity of the Rolando substance disappears. Electron histochemical investigations reveal that decreased enzyme activity is due to degeneration of FRAP-positive terminals. It is concluded that FRAP-positive terminals, representing the majority of electron dense sinusoids in the Rolando substance, are dorsal root collaterals; the origin of non-degenerating FRAP-negative electron dense terminals remains unknown for the time being.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 27 (1985), S. 559-565 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The double-zeta atomic functions are characterized by the nuclear charge z of the two-electron atomic system. The Hartree-Fock total energies and the corresponding orbital energies are calculated using various atomic wave functions for the helium isoelectronic sequence. The expectation values rn of various wave functions are also examined. It is found that the accuracy of our one-parameter double-zeta functions corresponds to the accuracy of the usual five-parameter double-zeta functions.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 42 (1992), S. 1651-1657 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The low-lying allowed electronic transition energies of four alternative structures to the C60 cage molecule are examined. The bond turning transformation of Stone and Wales is used to generate new C60 structures with the symmetries C2v, D2h, and D6h. We have found that the C60 is indeed a truncated icosahedron as originally proposed, but the production of other alternative structures in specific experimental conditions is not excluded.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...