Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Action potential and pH transient  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 167 (1986), S. 66-75 
    ISSN: 1432-2048
    Keywords: Action potential and pH transient ; Chlorophyta ; Eremosphaera ; Plasma membrane (I/V-curves) ; Potassium channel ; Signal transfer ; Voltage and current clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To characterize the assumed potassium channels in the plasma membrane of the green alga Eremosphaera viridis (Köhler et al. 1985), current-voltage (I/V)-curves under resting conditions and during an action-potential-like response (CAP) were constructed using voltage- and current-clamp techniques. Under resting conditions the I/V-curves of Eremosphaera showed a distinct upward bending when approaching zero mV, a nearly straight line in the medium part and a downward bending during strong hyperpolarization. Measurements in light and darkness frequently displayed a parallel shift of the I/V-curve in the middle part, indicating a current source which is slowed down by light-off. Using the voltage-clamp technique, N-shaped I/V-curves were sometimes observed. The potassium concentration outside influenced the downward-bending part of the I/V-curve whereas the tetraethylammonium cation, known to block potassium channels, reduced the upward-bending part in particular. A change in external pH, either to pH 7 or pH 3.1 from a standard pH 5.5, caused an increase in conductivity. Chemically induced action potentials were released in Eremosphaera under voltage-clamp conditions by light-off and there was both a current flow and an increase in conductivity during the CAP. Clamping the membrane potential at a value more negative than Nernst potential of potassium revealed an inward current, whereas clamping at a more-positive value revealed an outward current. The experiments demonstrate that there is no threshold potential in releasing a CAP. The I/V-curves performed under current clamp at the peak of CAP verify a previously found increased conductivity with hyper- or depolarization depending on the external potassium concentration. These experiments provide further evidence that in Eremosphaera potassium channels are involved in the CAP caused by a light-off signal. Additional experiments indicate that after light-off a transient acidification of the cytoplasm takes place in correlation with the CAP and the opening of potassium channels. A preliminary “battery model” is discussed to understand the role of potassium channels during a CAP in pH-regulation of the cytoplasm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...