Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 520-528 
    ISSN: 1432-1912
    Keywords: Cardiac muscle ; Antiarrhythmic drugs ; Electrophysiology ; Recovery of V maX ; Action potential duration ; Rate-dependent block ; Sodium channels ; Potassium channels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The cellular electrophysiological effects of dridocainide (EGIS-3966), a novel class I antiarrhythmic agent, was studied using conventional microelectrode techniques in canine cardiac Purkinje fibres and papillary muscle preparations obtained from humans and guinea-pigs. In each preparation, dridocainide (0.6–2 μmol/l) decreased the maximum velocity of action potential upstroke (Vmax) in a frequency-dependent manner, although marked differences were observed in its effects in Purkinje fibre and ventricular muscle preparations. In canine Purkinje fibres, action potential duration measured at 50% and 90% of repolarization was decreased, while action potential duration measured at 10% of repolarization was increased by dridocainide. In addition, the plateau of the action potential was depressed by the drug. These changes in action potential configuration were not observed in guinea pig or human papillary muscles. The offset kinetics of the dridocainide-induced V max block were different in Purkinje fibres and in ventricular muscle: the slow time constant of recovery of V max was estimated to be 2.5 s in dog Purkinje fibre and 5–6 s in human and guinea-pig papillary muscle. In guinea-pig papillary muscle, the rate of onset of the V max block was 0.15 and 0.2 per action potential in the presence of 0.6 and 2 μmol/l dridocainide, respectively. Dridocainide also decreased the force of contraction in this preparation. On the basis of the present results, dridocainide appears to posess mixed class LC and LA properties, with LC predominance in human and guinea-pig ventricular muscle. Present results also indicate that results of conventional classification of class I drugs may depend on the parameters chosen, as well as on the preparation selected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 11 (1996), S. 121-141 
    ISSN: 1573-269X
    Keywords: d'Alembert principle ; reduced multibody method ; constrained flexibility ; nonlinear vibration ; Galerkin's method ; checking function ; differential and algebraic equations (DAE) ; bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 4 (1993), S. 635-653 
    ISSN: 1573-269X
    Keywords: Multibody dynamics ; nonlinear vibration ; internal resonance ; energy balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the ground-work of implementing the multibody dynamics codes to analyzing nonlinear coupled oscillators. The recent developments of the multibody dynamics have resulted in several computer codes that can handle large systems of differential and algebraic equations (DAE). However, these codes cannot be used in their current format without appropriate modifications. According to multibody dynamics theory, the differential equations of motion are linear in the acceleration, and the constraints are appended into the equations of motion through Lagrange's multipliers. This formulation should be able to predict the nonlinear phenomena established by the nonlinear vibration theory. This can be achieved only if the constraint algebraic equations are modified to include all the system kinematic nonlinearities. This modification is accomplished by considering secondary nonlinear displacements which are ignored in all current codes. The resulting set of DAE are solved by the Gear stiff integrator. The study also introduced the concept of constrained flexibility and uses an instantaneous energy checking function to improve integration accuracy in the numerical scheme. The general energy balance is a single scalar equation containing all the energy component contributions. The DAE solution is then compared with the solution predicted by the nonlinear vibration theory. It also establishes new foundation for the use of multibody dynamics codes in nonlinear vibration problems. It is found that the simulation CPU time is much longer than the simulation of the original equations of the system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...