Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 129 (1981), S. 135-140 
    ISSN: 1432-072X
    Keywords: Pseudomonas fluorescens ; Assimilatory nitrate reduction ; Nitrate reductase ; Nitrate uptake ; Active transport ; Nitrogen-13 ; Short-lived isotope
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 μM. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Legume suppression ; Microbial pool ; 15N transformations ; Intercropped corn ; Alfalfa ; Medicago sativa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In greenhouse experiments, we examined the N transferred to intercropped corn from 15N-labeled alfalfa shoot residue and intact roots in an undisturbed soil system in response to two different suppression treatments and complete killing of alfalfa. The alfalfa treatments included complete killing (glyphosate only), glyphosate injury + cutting, and cutting only, with alfalfa shoot residue returned to the soil surface in all three treatments. Corn was planted in each pot following application of the treatments. When alfalfa was suppressed by glyphosate injury + cutting, corn had recovered 12% of the alfalfa N by 8 weeks of growth, but with cutting only, N recovery by corn was reduced to 4.0%. The completekill treatment resulted in 8% recovery by corn of alfalfa N. In all treatments, most of the alfalfa-N remained in the soil organic pool. A second experiment tested a cutting only treatment with 15N-labeled alfalfa residue returned to the soil surface. The 15N-labeled alfalfa residue contributed 4.1% of N to corn during the 8-week growth cycle. Twice as much 15N was found in the active microbial biomass pool in the two treatments with live intereropped plants compared to the monoculture treatments with complete killing (non-intercropped) and the control treatment of alfalfa regrowth only. An analysis of the change in the 15N content of the undisturbed alfalfa roots from just before the suppression until 8 weeks later suggested that approximately 80% of the root 15N was lost from the plant suppressed by cutting. This corresponds to 28% of the total N released from the alfalfa. The results suggest that the degree of legume suppression was a key factor in the availability of legume N to the second crop. When the two species were intercropped, more of the N available from legume residues went to plant uptake and microbial biomass and was not stabilized as quickly in the soil organic pool. Appropriate management schemes must be designed to increase N availability to the second crop without yield reduction. These studies suggest severe suppression is necessary; if successful, more of the N can be maintained in active pools.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 83 (1985), S. 453-457 
    ISSN: 1573-5036
    Keywords: Autoanalysis ; Denitrification ; Gas chromatography N2 ; fixation ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We have built an autosampler system that delivers the contents of pressurized gas collection vials to the injection port of a gas chromatograph. The three-part system consists of a shuttle base upon which vials move sequentially past a static sampling point, a sampling needle that is driven through vial septa by an air-driven piston, and an air-actuated sample valve that alternately places a sample loop in line with either a sample delivery line from the sample needle or a carrier stream leading to the gas chromatograph. We have used the system to analyze several thousand gas samples taken from soil cores assayed for denitrification activites, and have found the system reliable and capable of producing highly repeatable results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...