Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 77 (1989), S. 381-390 
    ISSN: 1432-1106
    Keywords: Cervico-ocular reflex ; Vestibulo-ocular reflex ; Interaction ; Self-motion sensation ; Humans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The interaction of the cervico-ocular reflex (COR) and the vestibulo-ocular reflex (VOR) was studied in 20 human Subjects (Ss) during application of synergistic and antagonistic combinations of neck and vestibular stimuli, and during two different psychophysical tasks related to the Ss' self-motion sensation. Slow and quick eye movement responses were analyzed separately. Neck stimulation produced by horizontal rotation of the trunk about the stationary head elicited slow COR eye movements of very low gain; COR direction was anticompensatory, unlike the compensatory one of the VOR. During either a synergistic combination of neck and labyrinthine stimuli (head rotation on stationary trunk) or an antagonistic combination (head-to-trunk rotation counter to head-in-space rotation), the resulting slow eye movements were slightly larger than those during labyrinthine stimulation alone (whole body rotation). This weak neck contribution could be described by a directionally non-specific enhancement of VOR gain and a linear summation of VOR and COR slow phases. These effects were essentially independent of whether the Ss estimated the magnitude of their head turning or trunk turning in space. If Ss were estimating their trunk turning, neck stimulation also evoked quick eye movements, but these were small and hardly affected the VOR quick phases during the combined stimulations. In contrast, if Ss estimated their head turning, neck stimulation evoked large quick phases, which interfered with the quick phases of the VOR; during the synergistic combination of head and neck stimuli. COR quick phases added to those of the VOR, thereby shifting the gaze in the direction of head rotation (reorientation of gaze). With the antagonistic combination they subtracted, so that the VOR slow phase could compensate the head rotation in space (stabilization of gaze). These findings suggest that (1) the slow phase of the COR has no functional significance in intact humans and (2) the quick phase of the COR plays a role for both stabilization and reorientation of gaze depending on the behavioural context.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 122 (1998), S. 260-274 
    ISSN: 1432-1106
    Keywords: Key words Eye-head coordination ; Bilateral vestibular loss ; Adaptation ; Vestibulo-ocular reflex ; Vestibulo-saccadic reflex ; Saccadic gaze shift ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Eye-head coordination during saccadic gaze shifts normally relies on vestibular information. A vestibulo-saccadic reflex (VSR) is thought to reduce the eye-in-head saccade to account for current head movement, and the vestibulo-ocular reflex (VOR) stabilizes postsaccadic gaze while the head movement is still going on. Acute bilateral loss of vestibular function is known to cause overshoot of gaze saccades and postsaccadic instability. We asked how patients suffering from chronic vestibular loss adapt to this situation. Eye and head movements were recorded from six patients and six normal control subjects. Subjects tracked a random sequence of horizontal target steps, with their heads (1) fixed in primary position, (2) free to move, or (3) preadjusted to different head-to-target offsets (to provoke head movements of different amplitudes). Patients made later and smaller head movements than normals and accepted correspondingly larger eye eccentricities. Targeting accuracy, in terms of the mean of the signed gaze error, was better in patients than in normals. However, unlike in normals, the errors of patients exhibited a large scatter and included many overshoots. These overshoots cannot be attributed to the loss of VSR because they also occurred when the head was not moving and were diminished when large head movements were provoked. Patients’ postsaccadic stability was, on average, almost as good as that of normals, but the individual responses again showed a large scatter. Also, there were many cases of inappropriate postsaccadic slow eye movements, e.g., in the absence of concurrent head movements, and correction saccades, e.g., although gaze was already on target. Performance in patients was affected only marginally when large head movements were provoked. Except for the larger lag of the head upon the eye, the temporal coupling of eye and head movements in patients was similar to that in normals. Our findings show that patients with chronic vestibular loss regain the ability to make functionally appropriate gaze saccades. We assume, in line with previous work, three main compensatory mechanisms: a head movement efference copy, an active cervico-ocular reflex (COR), and a preprogrammed backsliding of the eyes. However, the large trial-to-trial variability of targeting accuracy and postsaccadic stability indicates that the saccadic gaze system of patients does not regain the high precision that is observed in normals and which appears to require a vestibular head-in-space signal. Moreover, this variability also permeates their gaze performance in the absence of head movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 128 (1999), S. 491-504 
    ISSN: 1432-1106
    Keywords: Key words Perception of self-turning ; Passive turning ; Active turning ; Idiothesis ; Targeting ; Sensory fusion ; Proprioceptive-vestibular convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The present work compares passive and active rotations in darkness with the aim of characterizing the contribution of efferent and proprioceptive information to the perception of angular displacement. The perception of angular displacements was measured in 12 naive subjects (Ss), who either stood on a rotating platform (passive mode, P) or actively turned about their vertical axis by stepping around ”on the spot” on a stationary platform (active mode, A). Rotations consisted of short acceleration epochs followed by constant velocity periods of 18.5, 37, and 55°/s, with angular displacements ranging from 30° to 810° (presented in a randomized order); in the case of active turning, Ss had learned to approximately produce any of these three velocity levels on command. Ss indicated perceived displacement either verbally (verbal estimation mode, E), or by stopping their rotation when self-displacement appeared to match the magnitude specified by the experimenter (targeting, T). The resulting four conditions (PE, PT, AE, AT) were administered blockwise. In none of the four conditions was there a systematic dependence of perception on turning velocity. Therefore, the results were pooled across velocities, and the Ss’ performance was summarized in the form of estimation curves showing median estimates as a function of physical displacement. There were several differences between the passive and active modes: AE- and AT-estimation curves were linear, close to veracity, and fairly similar to each other. In contrast, the PE-curve was curved rightwardly (”saturation”), with small displacements being overestimated and large ones underestimated, whereas the PT-curve was linear and indicated a pronounced overestimation of large displacements. Moreover, both the random and the systematic errors (measures of individual consistency and correctness of individual calibration, respectively) were significantly smaller in the active than in the passive modes. The observed independence of Ss’ perception from turning velocity also during passive rotation suggests that the perceptual time constant was significantly longer than 16 s (a value cited as typical for vestibular perception), being possibly ”enhanced” by contextual implications and by expectations of the Ss. The clear improvement of perceptual performance in the active mode testifies to the importance of the efferent and proprioceptive signals arising during active motion. On the assumption that these signals are about as ”noisy” as the vestibular ones, the smaller errors during active turning could result from their combination with the vestibular signal. Alternatively, they could also be intrinsically less noisy than the vestibular signal and simply replace the latter during active motion. In the context of these alternatives (which are not exhaustive), the general problem of sensory fusion is discussed, that is, by which mechanisms are signals from different sensory sources combined to obtain a unified representation of the self’s orientation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 128 (1999), S. 563-567 
    ISSN: 1432-1106
    Keywords: Key words  Podokinetic afterrotation ; Active turning ; Treadmill stepping ; Visual-vestibular-somatosensory interaction ; Sensory habituation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Humans who have been stepping for 10 min or more about their vertical axis on a counterrotating platform while fixating on a stationary visual scene continue to circle in the same direction when they attempt, thereafter, to step on firm ground in darkness without turning (”podokinetic after-rotation”: PKAR). In the present report, we investigate whether PKAR is due to: (1) a sensory reinterpretation triggered by the conflict between the visual signal of stationarity and the somatosensory message of feet-on-platform rotation, or (2) an adaptation of the somatosensory afferents to prolonged unilateral stimulation irrespective of visual stimulation. Subjects (Ss) circled for 10 min about their vertical axis on an either stationary or counterrotating platform while they were either in darkness, or exposed to an optokinetic stimulus, or to a ”head-fixed” stationary pattern. Thereafter, Ss first stood motionless in darkness for 30 s, allowing vestibular after-effects to decay, and then tried (still without vision) to step in place on the stationary platform without turning while their body rotation was recorded by a potentiometer coupled to the head. All conditions involving podomotor activity without concomitant optokinetic stimulation evoked similar PKAR. With optokinetic stimulation, PKAR became larger, apparently because it was summed with an optokinetically induced after-rotation (oPKAR). This oPKAR could be demonstrated in isolation when Ss were passively rotated in front of the OKN-pattern instead of actively circling. PKAR could not be ”dumped”; it reappeared after 30 s of straight stepping under visual control. We suggest that PKAR is caused by adaptation of the somatosensory channel and not by a sensory conflict.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...