Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 213 (1988), S. 487-490 
    ISSN: 1617-4623
    Keywords: pColV ; Aerobactin ; Transposition ; IS1 ; Cointegration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Genes determining the high affinity iron transport system mediated by the siderophore aerobactin are flanked in the enterobacterial plasmid pColV-K30 by inverted repeats of IS1 sequences, suggesting that the aerobactin genes are part of a transposon. To study this possibility, the entire region between the two IS1 sequences was cloned as an 18 kb HindIII-BamHI restriction fragment in pUC8 giving plasmid pMO1. A number of derivatives of pMO1, in which aerobactin genes were tagged with a kanamycin resistance gene, were prepared in order to assess the ability of both IS1s to promote the formation of cointegrates with pCJ105, an F derivative devoid of insertion sequences. Mating-out assays indicated that both flanking IS1s were active in cointegrate formation at detectable frequencies. In some cases, the cointegrates could be resolved, the final result being a transposition-like event for the entire aerobactin system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: iron transport ; nitrogen fixation ; nodulation ; Rhizobium ; symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We have analyzed the ability of single site insertion mutants of Rhizobium meliloti 1021 defective in various components of a high-affinity iron transport system to produce nodules, fix nitogen and promote plant growth. Our results indicate that a high-affinity iron transport system may significantly increase the ability of the differentiated form of the bacterium to fix nitrogen and induce an increase in plant growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...