Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Corticospinal tract ; Myelinated fibers ; Axon-collaterals ; Aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A quantitative analysis was made of the myelinated fibers in the lateral corticospinal tract (LCST) at the levels of the 6th cervical, 7th thoracic and 4th lumbar spinal segments in 20 patients between 19 and 90 years old, and who died of non-neurological diseases. The diameter frequency histograms of myelinated fibers of LCST showed a bimodal pattern with a sharp peak of the small myelinated fibers and broad slope of the large myelinated fibers. The ratio of small fiber to large fiber densities was significantly higher in the 6th cervical (P〈0.05) and 4th lumbar segments (P〈0.01) than in the 7th thoracic segments. The density of small myelinated fibers was significantly lowered with advancing age (P〈0.05∼0.001), while that of large myelinated fibers was not significantly decreased in the aged patients, although it showed a slight age-dependent declining tendency. Age-dependent decline of small fiber density was more prominent in the cervical and lumbar segments. Retraction of the axon-collaterals from large-diameter myelinated fibers, which are abundant in the cervical and lumbar segments, may contribute to the age-related diminution of the small myelinated fibers in the LCST.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words: Corticospinal tract ; Myelinated fibers ; Axon-collaterals ; Aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A quantitative analysis was made of the myelinated fibers in the lateral corticospinal tract (LCST) at the levels of the 6th cervical, 7th thoracic and 4th lumbar spinal segments in 20 patients between 19 and 90 years old, and who died of non-neurological diseases. The diameter frequency histograms of myelinated fibers of LCST showed a bimodal pattern with a sharp peak of the small myelinated fibers and broad slope of the large myelinated fibers. The ratio of small fiber to large fiber densities was significantly higher in the 6th cervical (P 〈 0.05) and 4th lumbar segments (P 〈 0.01) than in the 7th thoracic segments. The density of small myelinated fibers was significantly lowered with advancing age (P 〈 0.05 ∼ 0.001), while that of large myelinated fibers was not significantly decreased in the aged patients, although it showed a slight age-dependent declining tendency. Age-dependent decline of small fiber density was more prominent in the cervical and lumbar segments. Retraction of the axon-collaterals from large-diameter myelinated fibers, which are abundant in the cervical and lumbar segments, may contribute to the age-related diminution of the small myelinated fibers in the LCST.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Key words Spinal ventral horn ; Aging ; Interneuron ; Alpha motor neuron ; Morphometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A cytoarchitectonic study of spinal ventral horn cells was performed to identify age-related changes. The diameter distribution of ventral horn neurons of the fourth lumbar segment of the spinal cord and their size and topographical distributions were investigated in 14 autopsy cases. These cases represented patients of 18–100 years of age who had died of non-neurological diseases. The results indicate that small neurons widely distributed in the intermediate zone of the ventral horn significantly diminished with aging (P 〈 0.0005, r = –0.898), whereas medium-sized and large neurons located in the medial and lateral nuclei showed only a slight decrease with advancing age. The total number of neurons in the whole ventral horn was also noted to decrease significantly with aging (P 〈 0.0005, r = –0.899). While small neurons in the intermediate zone of the ventral horn are thought to be mostly interneurons, their physiological function still remains obscure in many respects. The findings of this study provide insight into age-related cell loss in terms of size and location.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6903
    Keywords: GDNF, GDNFR-α ; mRNA ; motor neuron disease ; muscle, in situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mRNA expression levels of GDNF, GDNFR-α and RET were examined in the muscles of amyotrophic lateral screlosis (ALS) and X-linked spinal and bulbar muscular atrophy (SBMA). GDNF mRNA levels were significantly elevated to variable extent in the diseased muscles compared to control muscles, although they were not specific to the type of the diseases. The diseased muscles also have a different expression pattern of GDNF mRNA isoforms from controls. GDNF mRNA expression, however, tended to reduce in advanced muscle pathology. On the other hand, GDNFR-α mRNA levels were not changed significantly on expression levels in the diseased muscles. In situ hybridization study revealed that GDNF and GDNFR-α mRNAs were localized in subsarcolemmal space of muscle cells. RET mRNA was not detected in control nor diseased muscles. These results suggest that the elevated muscle GDNF acts as a trophic signal for motor neurons of motor neuron diseases, implying a possible therapeutic implication of GDNF to this type of diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...