Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 184 (1991), S. 151-153 
    ISSN: 1432-2048
    Keywords: Isocitrate lyase ; Leaf senescence ; Malate synthase ; Oryza ; Peroxisome ; Senescence (natural, induced) ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recently it has been demonstrated that detached leaves show glyoxysomal enzyme activities when incubated in darkness for several days. In this report glyoxylate-cycle enzymes have been detected in leaves of rice (Oryza sativa L.) and wheat (Triticum durum L.) from either naturally senescing or dark-treated plants. Isolated peroxisomes of rice and wheat show isocitrate lyase (EC 4.1.3.1), malate synthase (EC 4.1.3.2) and β-oxidation activities. Leaf peroxisomes from dark-induced senescing leaves show glyoxylic-acid-cycle enzyme activities two to four times higher than naturally senescing leaves. The glyoxysomal activities detected in leaf peroxisomes during natural foliar senescence may represent a reverse transition of the peroxisomes into glyoxysomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: Agrobacterium rhizogenes ; carbohydrate regulation ; cucumber (Cucumis sativus L.) ; gene expression ; glyoxylate cycle ; hairy roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When cucumber roots are excised and incubated without a carbon source, isocitrate lyase (ICL) and malate synthase (MS) mRNAs increase significantly in amount. However, if sucrose is added to the excised roots, the mRNAs do not accumulate. Hairy roots obtained by transformation with Agrobacterium rhizogenes show the same response. Transgenic hairy roots containing the Icl and Ms gene promoters fused to the GUS reporter gene, have very low GUS activity which increases dramatically when roots are incubated in the absence of sugar, indicating regulation at the transcriptional level. Staining of sugar-deprived roots shows that GUS activity is concentrated mainly in root tips and lateral root primordia, where demand for carbohydrate is greatest. In order to determine if Icl and Ms genes are expressed in roots of whole plants under conditions which may occur in nature, cucumber plants were subjected to reduced light intensity or defoliation. In both cases increases were observed in ICL and MS mRNAs. These treatments also reduced root sugar content, consistent with the hypothesis that sugar supply could control expression of Icl and Ms genes in roots of whole plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...