Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7373
    Keywords: Factor ; Halo ; Glioma ; Ruthenium Red ; Alcian Blue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Many glioma-derived cell lines have the capability of escaping cell-mediated immune attack. One mechanism of escape is the secretion of a hyaluronidase-sensitive mucopolysaccharide coat by these cells. This coat prevents contact and tumor cell killing by specific cytolytic allogeneic lymphocytes. The production of the coat by the tumor cells is stimulated by a macromolecular factor released by peripheral blood mononuclear (PBMC) cells in culture. We have examined the morphologic and ultrastructural features of this extracellular matrix. Three coat-producing lines were studied. Under phase contrast light microscopy, the coat is a clear pericellular ‘halo’. To stain this zone, ruthenium red and Alcian Blue 8 G stains, which bind to acid mucopolysaccharides (to a large extent, hyaluronic acid), were used. The two stains produced similar results. With light microscopy, a weblike pattern of stain was evident throughout the halo region. With transmission electron microscopy, staining was found along the plasma membrane of the glioma cells and their microvilli, stretching in long, branching filaments from these surfaces and, in some instances, from one microvillus to the next. Since mucopolysaccharide matrices have a large aqueous component, it was necessary to determine whether dehydration alters the stain pattern. Therefore, undehydrated ruthenium red stained specimens from each culture were embedded in Quetal 651 (Ted Pella, Inc., Tustin, CA), a water soluble plastic. No morphologic differences were noted between the hydrated and dehydrated specimens. This study indicates that numerous long microvilli and a secreted mucopolysaccharide matrix are important structural elements of the lymphocyte-stimulated tumor cell halo in vitro. The mechanism by which the PBMC factor stimulates coat formation and the importance of the coat in in vivo tumor defenses remain to be elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...