Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1238
    Keywords: Key words High frequency oscillatory ventilation ; Pressure control ventilation ; Surfactant deficiency ; Alveolar recruitment ; Open lung concept ; Animal model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: To demonstrate in experimental animals with respiratory insufficiency that under well-defined conditions, commercially available ventilators allow settings which are as effective as high frequency oscillatory ventilators (HFOV), with respect to the levels of gas exchange, protein infiltration, and lung stability. Design: Prospective, randomized, animal study. Setting: Experimental laboratory of a university. Subjects: 18 adult male Sprague-Dawley rats. Interventions: Lung injury was induced by repeated whole-lung lavage. Thereafter, the animals were assigned to pressure-controlled ventilation (PCV) plus The Open Lung Concept (OLC) or HFOV plus OLC (HFOOLC). In both groups, an opening maneuver was performed by increasing airway pressures to improve the arterial oxygen tension/fractional inspired oxygen (PaO2/FIO2) ratio to L 500 mm Hg; thereafter, airway pressures were reduced to minimal values, which kept PaO2/FIO2 L 500 mm Hg. Pressure amplitude was adjusted to keep CO2 as close as possible in the normal range. Measurements and results: Airway pressure, blood gas tension, and arterial blood pressure were recorded every 30 min. At the end of the 3-h study period, a pressure-volume curve was recorded and bronchoalveolar lavage was performed to determine protein content. After the recruitment maneuver, the resulting mean airway pressure to keep a PaO2/FIO2 L 500 mm Hg was 25 ± 1.3 cm H2O during PCVOLC and 25 ± 0.5 cm H2O during HFOVOLC. Arterial oxygenation in both groups was above L 500 mm Hg and arterial carbon dioxide tension was kept close to the normal range. No differences in mean arterial pressure, lung mechanics and protein influx were found between the two groups. Conclusions: This study shows that in surfactant-deficient animals, PCV, in combination with a recruitment maneuver, opens atelectatic lung areas and keeps them open as effectively as HFOV.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1238
    Keywords: Key wordsK. pneumoniae ; Bacteremia ; Mechanical ventilation ; Blood gases ; Animal ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: To determine the effect of peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) on the development of bacteremia with Klebsiella pneumoniae after mechanical ventilation of intratracheally inoculated rats. Design: Prospective, randomized, animal study. Setting: Experimental intensive care unit of a University. Subjects: Eighty male Sprague Dawley rats. Interventions: Intratracheal inoculation with 100 μl of saline containing 3.5–5.0 × 105 colony forming units (CFUs) K. pneumoniae/ml. Pressure-controlled ventilation (frequency 30 bpm; I/E ratio = 1 : 2; FIO2 = 1.0) for 180 min at the following settings (PIP/PEEP in cmH2O): 13/3 (n = 16); 13/0 (n = 16); 30/10 (n = 16) and 30/0 (n = 16), starting 22 h after inoculation. Arterial blood samples were obtained and cultured before and 180 min after mechanical ventilation and immediately before sacrifice in two groups of non-ventilated control animals (n = 8 per group). After sacrifice, the lungs were homogenized to determine the number of CFUs K. pneumoniae. Measurements and results: The number of CFUs recovered from the lungs was comparable in all experimental groups. After 180 min, 11 animals had positive blood cultures for K. pneumoniae in group 30/0, whereas only 2, 0 and 2 animals were positive in 13/3, 13/0 and 30/10, respectively (p 〈 0.05 group 30/0 versus all other groups). Conclusions: These data show that 3 h of mechanical ventilation with a PIP of 30 cmH2O without PEEP in rats promotes bacteremia with K. pneumoniae. The use of 10 cmH2O PEEP at such PIP reduces ventilation-induced K. pneumoniae bacteremia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...