Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Alzheimer's disease ; Immunocytochemistry ; Neurofibrillary tangles ; Paired helical filaments ; Tau protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Antibodies to multiple epitopes spanning the length of the tau molecule were used to study Alzheimer neurofibrillary tangles (NFT) using immunocytochemical methods and several differnt methods of fixation and tissue processing, including staining of vibratome sections, hydrated autoclaving of paraffin sections and immunofluorescence of NFT isolated from fresh brain tissue. Smears and sections were pretreated with trypsin and/or phosphatase to further characterize antibody binding. In tissue fixed briefly in periodate-lysine-paraformaldehyde, tau immunoreactivity was detected in astrocytes, but only a few tau epitopes were detected in NFT with this fixation method. In contrast, all tau epitopes were detected in NFT in tissue fixed in formaldehyde for prolonged periods of time. In the hippocampus, the number of NFT detected in the dentate fascia was in proportion to the duration of dementia, as we previously noted. Dentate fascia NFT were intracellular (i-NFT) and were reactive with antibodies recognizing epitopes in both the carboxy- and amino-terminal regions of tau, but not the microtubule-binding domain of tau, suggesting that microtubule-binding domain epitopes are hidden in i-NFT. In contrast, NFT in the subiculum and layer II of the parahippocampal cortex were mostly extracellular (e-NFT), especially in severe cases of long duration, e-NFT were immunoreactive with antibodies to the microtubule-binding domain, but only weakly reactive with antibodies to carboxy- or amino-terminal epitopes, suggesting that e-NFT may contain fragments of tau. In both isolated NFT and NFT in sections, amino-terminal epitopes, including the Alz-50 epitope, were sensitive to trypsin proteolysis, which suggests that the lack of staining of e-NFT by antibodies to the amino-terminal regions of tau is due to proteolysis. Antibodies reactive with amino-terminal epitopes also stained fewer NFT following hydrated autoclaving, while those reacting with the carboxy half of tau stained more NFT after hydrated autoclaving. Thus, although carboxy-terminal regions are not detected in e-NFT, they are probably masked, rather than proteolytically cleaved, since they can be revealed by hydrated autoclaving. Finally, phosphatase treatment of isolated NFT revealed enhanced immunostaining not only with Tau-1, as in previous studies demonstrating abnormal phosphorylation of tau proteins in NFT, but also with an antibody to exon 2, which reveals yet another phosphorylation site in tau of NFT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Alzheimer's disease ; Granulovacuolar degeneration ; Hippocampus ; Paired helical filament ; Tau protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An immunocytochemical study of Alzheimer's disease hippocampus with a panel of anti-tau antibodies revealed two antibodies that stained granulovacuolar bodies (GVB) in pyramidal neurons of Ammon's horn. These two affinity-purified anti-tau antibodies were raised in rabbits against synthetic peptides homologous to sequences (amino acids 44–55 and 75–87) in the 58 amino acid insert in the amino terminus of the longest form of human tau. This region is homologous to exons 2 and exon 3 of bovine tau. The exon 2 peptide contains a serine (amino acid residue 46), which has been shown to be a phosphorylated site in paired helical filaments. Antibodies to a nonphosphorylated exon 2 peptide failed to immunostain GVB, but those to the phosphopeptide consistently stained GVB. Staining, however, was most consistent with the antibody to the exon 3 sequence. As in previous studies, GVB were also stained by RT97, a neurofilament antibody whose epitope in tau appears to be a phosphorylated site in or near exon 2, perhaps at serine residue 46 (Brion et al. 1992). Antibodies to epitopes in the amino terminus, mid-region and carboxy terminus of tau failed to consistently stain GVB. More often they produced staining around the periphery of the GVB, giving the appearance of an “empty vacuole.” Most GVB were also immunoreactive with an antibody to ubiquitin. The results are consistent with the hypothesis that GVB are derived from sequestered altered tau possibly mediated by ubiquitin. The failure to detect most regions of tau in GVB is consistent with the idea that tau is partially degraded or highly modified in GVB.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 14 (1998), S. 637-643 
    ISSN: 1433-3015
    Keywords: Error assessment ; Error interaction ; Error transfer process ; Geometrical model ; Layered manufacturing ; Rapid prototyping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Geometric accuracy of components is one of the most important quality characteristics in layered manufacturing processes on which most rapid prototyping (RP) techniques are based. Layered manufacturing is an approximate fabricating process in which the final geometric error of the physical part is affected, not only by the approximation technique used, but also by the fabrication process. Errors that occur in one layer could propagate and transfer to other layers causing an accumulated error effect in the process. In this paper, a concept of disturbance error is introduced to describe the effect of accumulated errors in the fabrication process. A physical model is presented to describe error interactions and error transfer mechanisms in the layered manufacturing process. A geometrical model is developed using surface approximation techniques to describe the relationships of the geometrical errors. It is shown that although the complexity of the part geometry is not directly related to the manufacturing process, it will affect the geometrical errors of the part produced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 14 (1998), S. 644-650 
    ISSN: 1433-3015
    Keywords: Error interaction ; Error transfer ; Geometrical error ; Layered manufacturing ; Mathematical model ; Rapid prototyping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Layered manufacturing based rapid prototyping processes are subjected to not only a staircase effect owing to the approximating process used, but also an accumulated error transfer between layers. Certain types of error such as surface tilting and layer thickness variations that occur in one layer can transfer to other layers above it. This paper describes a mathematical model based on the physical and geometrical models discussed in Part 1 of the paper. The model uses the matrix transformation method to analyse the effect of transformation of local errors to the multiple layer global errors. A data preparation error transformation matrix is used to describe the error interactions between layers during the data preparation stage. A disturbance error transformation matrix is used to describe the error interaction within each layer and error propagation between layers during the part building process. This model describes geometrical error analysis involving profiling error, layer inclination and layer thickness variations. Numerical evaluation of the model is carried out for a typical benchmark component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...