Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amacrine cells, sustained, transient  (1)
  • Inner plexiform layer  (1)
  • anthropogenic  (1)
  • 1
    ISSN: 1432-0878
    Keywords: Retina ; Amacrine cells, sustained, transient ; Horseradish peroxidase ; Inner plexiform layer ; Rutilus rutilus (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Forty amacrine cells in retinae of a cyprinid fish, the roach, were intracellularly labelled with horseradish peroxidase following electrophysiological identification as sustained depolarizing, sustained hyperpolarizing or transient units. Labelled cells were analysed by light microscopy and compared with a catalogue of amacrine cells established in a previous Golgi study on the same species. About 30% of the cell types characterized by the Golgi method were encountered in the present study. When intracellularly labelled cells were differentiated on the basis of their dendritic organization in the plane of the retina, a given electrophysiological response pattern was found to be generated by different morphological types, and vice versa. However, examination of the ramification patterns of the dendrites within the inner plexiform layer (i.e. in the radial dimension of the retina), showed that this morphological parameter of a given amacrine cell could be correlated with its light-evoked response. Several amacrine cell types were found to possess special distal dendrites which arose from the main dendritic branches and extended well over a mm in the retina. Distal dendrites were oriented tangentially with respect to the optic nerve papilla, but did not appear to be involved in any synaptic connectivity. It is concluded that the Golgi-based classification is a valuable tool for identifying intracellularly labelled amacrine cells. However, although the correlation between layering of dendrites in the inner plexiform layer and electrophysiology was generally good, additional physiological parameters would be required to determine whether more extensive parallels exist between structural and functional characteristics of amacrine cells. Alternatively, the considerable morphological diversity of amacrine cells may be of limited physiological significance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: anthropogenic ; atmospheric deposition ; eutrophication ; fertilizer ; nitrogen ; nitrogen budget ; nitrogen fixation ; N:P ratio ; phosphorus ; pristine ; rivers ; temperate ; tropical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...