Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ulva  (3)
  • Crassulacean acid metabolism  (2)
  • Amaranthus  (1)
  • C3, C4 plants (H-isotope composition)  (1)
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Carbon isotope ratio (gradients) ; Crassulacean acid metabolism ; Epidermis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract In Ceropegia dichotoma, Crassula argentea, Esheveria colorata, Kalanchoë beharensis, Opuntia ficus-indica, Sansveria stuckyi and Opuntia inermis the carbon-isotope ratio (δ 13C) of tissues close to the epidermis is 2–4.3‰ more negative than those in the centre of the leaf or cladode. The greatest change in δ 13C value occurs between the epidermal layer and the layer of mesophyll tissue immediately underneath. Analysis of major metabolic and structural components in successive layers of Crassula argentea grown under controlled environmental conditions conducive to Crassulacean acid metabolism confirmed that much of the variation in δ 13C values of bulk carbon is caused by differences in chemical composition. Thus the steep gradient in δ 13C value at the epidermis reflects, in part, the contribution of more-negative δ 13C values of lipids in these tissues. Moreover, during nocturnal CO2 fixation the amount of malic acid synthesised decreases with depth and the δ 13C value of the methanol-soluble fraction is less negative with distance away from the upper epidermis. These results are consistent with diffusion limitation to CO2 uptake in these thick leaf tissues, which also contributes to the observed gradients in δ 13C value.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1939
    Schlagwort(e): Chlorophyll fluorescence ; Photoinhibition ; Photosynthesis ; Temperature stress ; Ulva
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange (τ) and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-2048
    Schlagwort(e): Amaranthus ; Carbohydrate accumulation ; Chilling treatment ; Sucrose inhibition of photosynthesis ; Phloem translocation ; Photosynthesis (C4 plant)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Photosynthesis was studied in relation to the carbohydrate status in intact leaves of the C4 plant Amaranthus edulis. The rate of leaf net CO2 assimilation, stomatal conductance and intercellular partial pressure of CO2 remained constant or showed little decline towards the end of an 8-h period of illumination in ambient air (340 μbar CO2, 21% O2). When sucrose export from the leaf was inhibited by applying a 4-h cold-block treatment (1°C) to the petiole, the rate of photosynthesis rapidly decreased with time. After the removal of the cold block from the petiole, further reduction in photosynthetic rate occurred, and there was no recovery in the subsequent light period. Although stomatal conductance declined with time, intercellular CO2 partial pressure remained relatively constant, indicating that the inhibition of photosynthesis was not primarily caused by changes in stomatal aperture. Analysis of the leaf carbohydrate status showed a five- to sixfold increase in the soluble sugar fraction (mainly sucrose) in comparison with the untreated controls, whereas the starch content was the same. Leaf osmotic potential increased significantly with the accumulation of soluble sugars upon petiole chilling, and leaf water potential became slightly more negative. After 14 h recovery in the dark, photosynthesis returned to its initial maximum value within 1 h of illumination, and this was associated with a decline in leaf carbohydrate levels overnight. These data show that, in Amaranthus edulis, depression in photosynthesis when translocation is impaired is closely related to the accumulation of soluble sugars (sucrose) in source leaves, indicating feedback control of C4 photosynthesis. Possible mechanisms by which sucrose accumulation in the leaf may affect the rate of photosynthesis are discussed with regard to the leaf anatomy of C4 plants.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-2048
    Schlagwort(e): Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Clonal tissue of the marine chlorophyte macroalga, Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease in F m, and partially recovered over several days. Under the added stress of N deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, but P m decreased by 50% over one week, indicating inability to acclimate to high light. Both ϕ and F v/F m decreased markedly on the first day and did not significantly recover. Changes in F o, F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevated R d and declining P m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency in U. rotundata.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-2048
    Schlagwort(e): Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Clonal tissue of the marine chlorophyte macroalga,Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease inF m, and partially recovered over several days. Under the added stress ofN deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, butP m decreased by 50% over one week, indicating inability to acclimate to high light. Bothϕ andF v/F m decreased markedly on the first day and did not significantly recover. Changes inF o,F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevatedR d and decliningP m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency inU. rotundata.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1432-2048
    Schlagwort(e): C3, C4 plants (H-isotope composition) ; Deuterium ; Hydrogen-isotope composition ; Leaf (H-isotope composition)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The natural abundance hydrogen-isotope composition of leaf water ( $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ ) and leaf organic matter (δ D org ) was measured in leaves of C3 and C4 dicotyledons and monocotyledons. The $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ value of leaf water showed a marked diurnal variation, greatest enrichment being observed about midday. However, this variation was greater in the more slowly transpiring C4 plants than in C3 plants under comparable environmental conditions. A model based on analogies with a constant feed pan of evaporating water was developed and the difference between C3 and C4 plants expressed in terms of either differences in kinetic enrichment or different leaf morphology. Microclimatic and morphological features of the leaves which may be associated with this factor are discussed. There was no daily excursion in the δ D org value in leaves of either C3 or C4 plants. When δ D org values were referenced to the mean $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ values during the period of active photosynthesis, the discrimination against deuterium during photosynthetic metabolism (ΔD) was greater in C3 plants (-117 to -121‰) than in C4 plants (-86 to -109‰). These results show that the different water use “strategies” of C3 and C4 plants are responsible for the measured difference in deuterium-isotope composition of leaf water. However, it is unlikely that these physical processes account fully for the differences in hydrogen-isotope composition of the products of C3 and C4 photosynthetic metabolism.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1432-2048
    Schlagwort(e): Carbon dioxide fixation (dark) ; Crassulacean acid metabolism ; Fumarase ; Malic acid ; Phosphoenolpyruvate carboxylase ; Ribulose-1,5-bisphosphate carboxylase
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The labeling patterns in malic acid from dark 13CO2 fixation in seven species of succulent plants with Crassulacean acid metabolism were analysed by gas chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectrometry. Only singly labeled malic-acid molecules were detected and on the average, after 12–14 h dark 13CO2 fixation the ratio of [4-13C] to [1-13C] label was 2:1. However the 4-C carboxyl contained from 72 to 50% of the label depending on species and temperature. The 13C enrichment of malate and fumarate was similar. These data confirm those of W. Cockburn and A. McAuley (1975, Plant Physiol. 55, 87–89) and indicate fumarase randomization is responsible for movement of label to 1-C malic acid following carboxylation of phosphoenolpyruvate. The extent of randomization may depend on time and on the balance of malic-acid fluxes between mitochondria and vacuoles. The ratio of labeling in 4-C to 1-C of malic acid which accumulated following 13CO2 fixation in the dark did not change during deacidification in the light and no doubly-labeled molecules of malic acid were detected. These results indicate that further fumarase randomization does not occur in the light, and futile cycling of decarboxylation products of [13C] malic acid (13CO2 or [1-13C]pyruvate) through phosphoenolpyruvate carboxylase does not occur, presumably because malic acid inhibits this enzyme in the light in vivo. Short-term exposure to 13CO2 in the light after deacidification leads to the synthesis of singly and multiply labeled malic acid in these species, as observed by E.W. Ritz et al. (1986, Planta 167, 284–291). In the shortest times, only singly-labeled [4-13C]malate was detected but this may be a consequence of the higher intensity and better detection statistics of this ion cluster during mass spectrometry. We conclude that both phosphoenolpyruvate carboxylase (EC 4.1.1.32) and ribulose-1,5-biphosphate carboxylase (EC 4.1.1.39) are active at this time.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...