Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Familial Type 2 (non-insulin-dependent) diabetes mellitus linkage analysis ; glucokinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glucokinase is among the few genes which may play a key role in both insulin secretion and insulin action. Glucokinase is present in pancreatic beta cells where it may have a key role in the glucose sensing mechanism, and it is present in hepatocytes, where it may participate in glucose flux. Glucokinase defects have recently been implicated in maturity-onset diabetes of the young. To examine the hypothesis that glucokinase plays a key role in the predisposition to common familial Type 2 (non-insulin-dependent) diabetes mellitus, we typed 399 members of 18 Utah pedigrees with multiple Type 2 diabetic individuals for two markers in the 5′ and 3′ flanking regions of the glucokinase gene. Linkage analysis was performed under both dominant and recessive models. We also repeated these analyses with individuals with impaired glucose tolerance who were considered affected if their stimulated (2-h) glucose exceeded age-specific normal levels for 95 % of the population. Under several dominant models, linkage was significantly excluded, and under recessive models log of the odds (LOD) score was less than −1. We were also unable to demonstrate statistical support for the hypothesis that a small subgroup of pedigrees had glucokinase defects, but the most suggestive pedigree (individual pedigree LOD 1.8–1.9) ranked among the youngest and leanest in our cohort. We can exclude a major role for glucokinase in familial Type 2 diabetes, but our data cannot exclude a role for this locus in a minority of pedigrees. Further testing of the hypothesis that glucokinase defects contribute to diabetes in a small proportion of Type 2 diabetic pedigrees must await thorough sequence analysis of the glucokinase gene, including regulatory regions, particularly from pedigrees with positive LOD scores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; glucokinase ; gestational diabetes ; American Blacks ; single-strand conformation polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mutations of the glucokinase gene result in early-onset familial Type 2 (non-insulin-dependent) diabetes mellitus, and several members of the mutant glucokinase kindreds were originally diagnosed as having gestational diabetes. This study examined the glucokinase gene in 270 American Black women, including 94 with gestational diabetes whose diabetes resolved after pregnancy (gestational diabetes only), 77 with gestational diabetes who developed Type 2 diabetes after pregnancy (overt diabetes), and 99 normal control subjects who were recruited during the peripartum period. Two simple sequence repeat polymorphisms flanking either end of the glucokinase gene were evaluated. No association was found between glucokinase alleles and gestational diabetes only or overt diabetes, after adjustment for multiple comparisons. To detect single base changes, all 11 exons and proximal islet and liver promoter regions were examined by polymerase chain reaction plus single-stranded conformational polymorphism analysis in 45 gestational diabetes only patients who had not yet developed Type 2 diabetes. Nine coding region variants were identified: Ala11 (GCC) to Thr11 (ACC) in islet exon 1, and 8 variants either in untranslated regions or in the third base of a codon. Four variant sites were found in introns, but none in splicing consensus sequences. Analysis of the promoter regions revealed two common variants, G→A at islet −30 (24%), and G→A at liver −258 (42%). The frequencies of the promoter variants, determined by allele specific polymerase chain reaction analysis, did not differ among the three groups. Thus, no significant coding sequence glucokinase mutations were found in 90 alleles from 45 patients with gestational diabetes. Further studies will be required to rule out a minor role of the newly-described promoter region variants as susceptibility factors in this disorder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...